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a b s t r a c t

This paper is devoted to the validation of a two-fluid two-phase flow model in some highly unsteady sit-
uations involving strong rarefaction waves and shocks in water-vapor flows. The two-fluid model and its
associated numerical method that were introduced in a previous work are first recalled, and details on
the computational scheme and the verification of interfacial mass transfer terms are provided.
Consistency with experimental data is checked in three configurations. First, a comparison with the speed
of sound in a two-phase mixture is detailed. Afterwards, numerical approximations obtained with the
two-fluid approach are discussed and compared with some experimental data documented in the
Simpson water-hammer experiment and the high depressurization with flashing associated with
Canon experiment.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The development of models and associated numerical methods
for the simulation of two-phase flows should be achieved in three
distinct but evolutionary steps. The derivation of suitable models,
both from a mathematical and physical point of view, is the first
step that provides closed sets of equations involving non linear
PDEs. Then numerical algorithms must be found that would pro-
vide convergent series of approximations towards solutions of
the latter PDEs, and this corresponds to the verification process.
Afterwards numerical results obtained with that set of PDEs must
be compared with available experimental data, making sure that
the mesh size is sufficiently small so that numerical approxima-
tions are no longer sensitive to a further mesh refinement. This last
step is referred as the validation step; it is mandatory and is in fact
the main objective of the whole approach. Once these three steps
have been achieved with the most intense scrutiny, one may tackle
the difficult problem of the quantification of uncertainities, but it
would be meaningless to begin that work before the modeling/ver

ification/validation steps had been completed, as recalled in [7] for
instance.

We focus in this paper on water-vapor flows with mass transfer,
with emphasis on water-hammer flows and thus on shock waves
occurring in the transient, and on sudden depressurizations that
might arise if some loss of fluid would happen in a coolant circuit.
This of course requires the application of a two-phase flow model
that can handle heat and mass transfer in highly unsteady situa-
tions. Actually, the main aim in the current work is to scrutinize a
few available validation test cases of unsteady two-phase flows, and
in that sense, this work may be seen as a sequel of the paper
[32] where emphasis was put on the presentation of a two-fluid
model, together with suitable numerical methods and their verifi-
cation, while restricting to gas–liquid flows without any mass
transfer.

Thus we will first recall and summarize herein the main charac-
teristics concerning the two-fluid two-phase flow model that will
be used, and its associated numerical method, and then we will
investigate features linked with mass transfer. The two-phase flow
model describes the dynamics of seven quantities: the statistical
fractions, the mean densities, mean velocities and mean tempera-
tures within each phase. The model and its main properties will be
briefly recalled in Section 2. For further details on this class of
two-fluid models, the reader is referred to [5,10,6,13,19,22–24,26,
28,14,33,36,37] among others. Afterwards, we will rather quickly
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provide the main numerical tools that are used in the approxima-
tion of the two-fluid model in the Finite Volume code. Basically, the
algorithm relies on the use of a fractional step method that com-
plies with the entropy inequality, and it treats separately convec-
tive terms and relaxation terms. The most important properties
and constraints will be briefly described, and a more detailed dis-
cussion on some possible way to cope with mass transfer between
phases will follow. Obviously, other approaches might be consid-
ered as well, such as those introduced in [1,3,4,26,47,51] for
instance. The last section will be devoted to the presentation of
three distinct cases and associated comments.

2. The two-fluid model

The derivation of the two-fluid model which is described in the
sequel relies on classical statistical averaging and closure laws, fol-
lowing a standard thermodynamical approach, the keystone of
which is the entropy inequality. Many details and comments can
be found in [24,33], and also in [19,35,36,28,10]. We would like
to emphasize that:

� this particular model does not take the counterpart of single-
phase Reynolds stresses into account (these are neglected).
Some possible extensions in that direction are currently
examined, but this remains beyond the scope of the present
work, which basically aims at investigating some validation test
cases;
� instantaneous single-phase equations of state rely of stiffened

gas EOS. Thus a straightforward consequence is that averaged
EOS may be written exactly as functions of the sole main
unknowns (mean pressure, mean internal energy and mean
density);
� some high-order statistical correlations involving pressure and

velocity fluctuations are neglected. As underlined in [33], some
non-trivial closure laws might be accounted for, while keeping
the same entropy–entropy flux formulation, following the basic
approach of Ristorcelli [44], but we also know that this would
render the system of PDEs even more intricate ([8,52]); hence
these extensions have not been examined in detail up to now.

Before going further on, we recall that the main specifications
for the model derivation are such that:

� a physically relevant entropy inequality should hold for the
smooth solutions of the whole model, including viscous terms
and sources;
� the homogeneous model obtained by getting rid of viscous and

source contributions should be hyperbolic for physically rele-
vant phasic states (thus for positive densities, positive internal
energies and positive statistical void fractions);
� unique and meaningful jump conditions should be associated

with the latter homogeneous model.

2.1. Governing equations

We use classical notations in this paper. Thus akðx; tÞ will
denote the statistical void fraction of phase k ¼ l;v , so that:

alðx; tÞ þ avðx; tÞ ¼ 1

Variables qk;Uk; Pk respectively stand for the mean density, the
mean velocity, the mean pressure within phase k. We also define
partial masses:

mk ¼ akqk

The total mean energy Ek within phase k ¼ l;v is defined as:

Ek ¼ qk�kðPk;qkÞ þ qkU2
k=2

where the function associated with the mean internal energy �k

only depends on the mean pressure and the mean density ðPk;qkÞ.
We can now introduce the set of governing equations for the

main unknown W:

Wt ¼ ðav ;ml;mv ;mlUl;mvUv ;alEl;avEvÞ

These governing equations of the two-fluid model read, for
k ¼ l;v:

@t avð Þ þ VintðWÞ@x avð Þ ¼ /vðWÞ
@t mkð Þ þ @x mkUkð Þ ¼ CkðWÞ

@t mkUkð Þ þ @x mkU2
k

� �
þ @x akPkð Þ �PintðWÞ@x akð Þ

¼ DkðWÞ þ CkðWÞUintðWÞ
@t akEkð Þ þ @x akUkðEk þ PkÞð Þ þPintðWÞ@t akð Þ
¼ wkðWÞ þ UintðWÞDkðWÞ þ CkðWÞHintðWÞ

ð1Þ

setting: Uint ¼ ðUl þ UvÞ=2, and: Hint ¼ UlUv=2.
As it has been emphasized in [24,33] among other references,

admissible closure laws for PintðWÞ may be exhibited in order to
comply with a physical entropy inequality. In practice, this means
that, assuming a convex form for VintðWÞ:

VintðWÞ ¼ nðWÞUl þ ð1� nðWÞÞUv : ð2Þ

the closure law for PintðWÞ should be of the form:

PintðWÞ ¼ vðWÞPl þ ð1� vðWÞÞPv ð3Þ

with:

vðWÞ ¼ ð1� nðWÞÞ=Tl

ð1� nðWÞÞ=Tl þ nðWÞ=Tv
ð4Þ

The latter function vðWÞdepends on the mean temperatures Tk

which are defined by:

1=Tk ¼ @Pk
Skð Þ=@Pk

�kð Þ

where the SkðPk;qkÞ denote the mean phasic entropies that must
comply with:

c2
k@Pk

Skð Þ þ @qk
Skð Þ ¼ 0 ð5Þ

denoting:

c2
k ¼ ð@Pk

�kðPk;qkÞð ÞÞ�1 Pk

ðqkÞ
2 � @qk

�kðPk;qkÞð Þ
 !

:

We also set:

lk ¼ �k þ Pk=qk � TkSk

At this stage, it only remains to define the source terms
CkðWÞ;DkðWÞ;wkðWÞ, which respectively stand for the interfacial
mass transfer, the drag effects and the interfacial heat transfer,
but also the right-hand side in the governing equation of the statis-
tical void fraction /kðWÞ. The latter one arises due to the statistical
averaging (see [19,33]). Obviously we have:

X
k¼l;v

CkðWÞ ¼ 0;
X
k¼l;v

wkðWÞ ¼ 0;
X
k¼l;v

DkðWÞ ¼ 0 ð6Þ

and also:

X
k¼l;v

/kðWÞ ¼ 0: ð7Þ

Closure laws for the former three ClðWÞ;DlðWÞ;wlðWÞ
correspond to classical terms arising in the two-fluid literature,
that is:
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