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a b s t r a c t

This paper describes a consistent algorithm for eliminating the numerical wiggles appearing when
solving the finite volume discretized Navier–Stokes equations with discrete body forces in a collocated
grid arrangement. The proposed method is a modification of the Rhie–Chow algorithm where the force
in a cell is spread on neighboring cells by applying equivalent pressure jumps at the cell faces. The
method shows excellent results when applied for simulating the flow through an actuator disk, which
is relevant for wind turbine wake simulations.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The main advantage of using a collocated grid arrangement for
finite volume based computational fluid dynamics (CFD) is that it is
better suited for non-orthogonal grids. However, in contrast to a
standard staggered arrangement, a collocated grid does not inher-
ently ensure strong pressure–velocity coupling. The most common
way to avoid the pressure–velocity decoupling is by using the
interpolation scheme proposed by Rhie and Chow [1]. Over the
years, a vast number of corrections have been proposed to the orig-
inal Rhie–Chow interpolation scheme to remove its dependence on
under-relaxation parameter and time steps [2–8]. However, these
schemes are not capable of eliminating the non-physical wiggles
in the flow field occurring as a consequence of discontinuous body
forces or pressure jumps. In fact these interpolation schemes can-
not properly handle any flows in which there are spatially varying
body forces, but since the numerical wiggles are most pronounced
near discontinuities the issue is most often addressed in connec-
tion with flows involving immersed like boundaries and actuator
surfaces.

One way to avoid the wiggles is by smoothing the forces using a
suitable smearing function. This approach was proposed by
Sørensen and Shen [9] for transferring the forces from actuator
lines (representing the blades of a rotor) to the computational
mesh. In their work, the forces are distributed smoothly to the cells

surrounding the rotor through a regularization kernel where the
regularization function is a Gaussian. This method is simple to
implement and is currently the most widely used in connection
with actuator disk/line based methods for simulating wind turbine
rotors [10–15]. The disadvantage of this method is that it depends
on a free parameter, �, which controls the amount of smearing.
Previous studies have shown that the choice of � does influence
quantities such as the power performance of the wind turbine
[16]. The parameter can be chosen to reflect the chord of the wind
turbine blade but usually it is chosen as a compromise between
diminishing the numerical wiggles and limiting the smoothing of
the flow field [17]. Another drawback of the method is that it in
principle involves evaluating an exponential function in the entire
computational domain at each time step and thus may be rather
computationally expensive. Furthermore, this approach is not fully
consistent because it merely treats the symptoms of handling the
body forces incorrectly and does not treat the origin of the wiggles,
which is that the body force term is not discretized in the same
way in the momentum and continuity equations.

Mencinger and Zun [18] presented a consistent discretization of
the body forces, in which the body forces are effectively computed
at cell faces and then interpolated to the cell center in a similar
fashion as the pressure gradient is treated in Rhie–Chow interpola-
tion. The proposed discretization rule is derived for a quiescent
fluid subject to body forces but it is also shown to give good results
for a moving fluid. However, the method is only applied for mod-
eling the forces in two phase volume-of-fluids and cannot be
directly applied for simulating the surface forces on an immersed
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like boundary without a method for transferring surface forces to
volume forces. One way to achieve this is to replace the surface
force with a volume force through a delta function [19], but this
approach typically depends on a free parameter for representing
the delta function discretely and thus suffers from the same disad-
vantage as the method by Sørensen and Shen [9].

Réthoré et al. [20,21] proposed a method equivalent to
Mencinger and Zun, in which a discrete body force is first trans-
formed into pressure jumps on the cell faces and then used to
obtain the body forces in cell centers. They applied their so-called
force allocation method for simulating an actuator disk in a uniform
inflow and showed that it effectively removed the wiggles without
the use of a regularization parameter. Furthermore, they validated
and verified their results through a comparison with both analytical
solutions as well as full rotor computations. Besides treating the
body forces consistently, the main advantage of this method is that
it offers a sharper representation of the actuator surface than meth-
ods using a regularization parameter.

However, as we shall see in the present work, the force alloca-
tion method of Réthoré and Sørensen [20] produces a discontinu-
ous flow field near the actuator disk if its center axis is not
aligned with the background grid. This problem turns out to be
related to the way the pressure jumps are determined and is not
a problem of the overall method itself. In the present work, we
therefore present an improved method for determining the pres-
sure jumps, which yields good results even when the rotor is not
aligned with the grid.

2. Treatment of body forces

The starting point for the proposed method is the finite volume
discretized equations of momentum and mass of an incompress-
ible fluid with constant viscosity l, which for a cell P read:
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flux of mass through cell face f of cell P.

The velocity and pressure are coupled via e.g. the Semi-Implicit
Method for Pressure-Linked Equations (SIMPLE) [22], which essen-
tially is an iterative procedure where the velocity is first predicted
by solving Eq. (1) and then corrected by solving Eq. (2). In order to
solve these equations, it is necessary to find the velocity at the cell
faces, which is not known a priori on collocated grids. One way to
get these is to interpolate from cell centers to cell faces but this
leads to the well known odd even pressure decoupling. To over-
come this issue Rhie and Chow proposed to estimate the velocity
at a cell face from Eq. (1) by computing the pressure gradient term
directly at the cell faces and obtaining the remaining terms
through interpolation from the cell centers. This approach only
works well for flows without spatially varying body forces.

The method we propose here for handling body forces on collo-
cated grids is based on the method by Réthoré and Sørensen [20].
Here a discrete body force is first transformed into pressure jumps
on the cell faces, which are then used directly in the estimation of
the face velocities in Eqs. (1) and (2) similarly to the way pressure

is handled in Rhie/Chow interpolation. Thus, the idea is to express

the ith component of the body force in cell P, f P
i as the sum of

pressure jumps on the cell faces, i.e.
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Here p̂P
f ;i is the pressure jump in the i-direction on face f of cell P and

nP
f ;i is the i-component of the corresponding outward-pointing unit

normal vector, see Fig. 1. In case a neighboring cell also contains a
body force, then the pressure jump on their common face is added
together to form �̂pf ;i, which is then used in the estimation of face
velocities [20]. Taking the east face of cell P as an example, we get:
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where superscripts P and E refer to the cell in which the pressure
jump is computed. Note that with the used syntax we have
nP
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The method used to convert body forces to pressure jumps, p̂f ;i

can in principle be chosen arbitrarily as long as they fulfil Eq. (3)
and that the final pressure jumps �̂pf ;i are used directly for the esti-
mation of face velocities. In any case the pressure jumps are subse-
quently used for recomputing the body forces in the momentum
equation at the cell center. Thus for cell P we get:
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where the division by two implies that each neighboring cell of a face
carry the pressure jump equally. Thus, the new body force �f is in prac-
tice equal to the original uncorrected body force f smeared over the
nearest neighboring cells but in contrast to a standard smearing,
the additional consistent use of the pressure jumps in the calculation
of the fluxes, effectively removes the numerical wiggles.

2.1. Computing pressure jumps: original method

In the original work by Réthoré and Sørensen [20], a solution to
Eq. (3) is obtained by assuming that the pressure jumps on each
face of cell P scales according to its normal vector and surface area,
i.e.:
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where index f and f 0 refers to different faces on cell P.
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Fig. 1. Sketch of finite volume grid (in 2D) with definition of the used notation.
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