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a b s t r a c t

Stable solutions of a 2D symmetrical two-sided square lid-driven cavity are numerically determined with
spectral accuracy. In addition to the expected symmetrical solutions, a set of two non-symmetrical solu-
tions, mirror images of one another, are obtained for Reynolds number (Re) greater than a critical value,
Re1 by suitably eliminating one of the symmetrical solutions. The symmetrical solutions which are
reported in this paper are obtained for Re 6 4000 and are all steady. The non-symmetrical solutions
are computed for large values of Re until these solutions become unsteady, at a second critical Re; Re2,
viz., for Re P Re2 > Re1. The transition from a non-symmetrical solution to its symmetrical counterpart
upon reducing the Re below Re1 is addressed. It is observed that the symmetric solutions are those which
maximize the flow kinetic energy per unit input energy.

� 2015 Published by Elsevier Ltd.
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1. Introduction

The driven-cavity problem has long been considered as the
ideal model for benchmarking Navier–Stokes numerical solvers,
in particular for assessing their capability to treat a configuration
until its extremely non-linear, possibly turbulent, regime is pre-
dicted. This model is actually the simplest one for analyzing the
flow which occurs in an important industrial process, viz., the
chemical etching or the film coating. In spite of the numerous
numerical computations which have been performed on this con-
figuration, there are still several physical issues that are far from
being fully understood. One can say that the quintessential prob-
lem on closed flows is the driven cavity; there is neither heat trans-
port nor species transport, but just momentum transport with
incompressibility.

Amongst the variety of configurations which can be defined for
this driven-cavity problem, the ones where symmetries are
imposed via the velocity boundary conditions are the most inter-
esting. They indeed raise the question of the interaction between
the flow symmetry and its stability, in addition to the intrinsic
characteristic of any non-linear system, viz., the possibility of mul-
tiple solutions. This paper considers a 2D symmetric situation, the
two-sided square driven cavity, wherein two walls facing one
another move in their plane with the same imposed velocity, the
other two walls being at rest.

Although this problem has received much attention,
[13,4,2,1,7,3,20], there is no complete identification, so far, of all
the stable solutions to this 2D simple situation, whether or not
they are steady. Five steady solutions are now known, [4], when
the Reynolds number Re does not exceed 2000. One of these solu-
tions is self-symmetrical, and the four others are made of two pairs
of non-symmetrical solutions, each solution in one pair being sym-
metrical to the other pair.

The present paper addresses these issues, i.e., the stability of the
solutions, the transition from one steady state to another and the
manner of the transition. The numerical method uses a time
marching procedure. While such a method can only lead to stable
solutions, steady or not, it allows us also to follow transitional
behaviors when the flow experiences a jump from a solution to
another. The symmetrical solutions have been computed for
Reynolds number values going up to 4000. These solutions are all
steady. A pair of non-symmetrical solutions, symmetrical to each
other, has also been determined and computed beyond its transi-
tion to unsteadiness, i.e., for Reynolds number values as large as
14,000. It is observed that the non-symmetrical flow solutions cor-
respond to a less efficient conversion of the input energy into
kinetic energy of the flow.

2. Physical configuration and equations of the problem

Fig. 1 is a sketch of a specific two-sided lid-driven cavity, a
square cavity of unit size. The cavity is filled with a fluid set into
motion, on account of its viscosity, by the velocity ~v ¼ UðxÞ êx

which is imposed on the top and bottom rigid lids. The left and
right walls are rigid and taken to be at rest. No-slip of the fluid is
imposed along all the walls. This physical situation is therefore
symmetrical about the centerline z ¼ 1=2. The imposed lid velocity

UðxÞ is chosen so as~v and ~$:~v are not singular at the contact points
of the driving lids with the fixed walls.

The fluid flow is described by the dimensionless momentum
and mass balance equations, viz.,

Re
@~v
@t
þ ð~v:~$Þ~v

� �
¼ �~$pþ ~$2~v ð2:1Þ

and

~$:~v ¼ 0; ð2:2Þ

where the dimensionless variables are the velocity, ~vðx; zÞ ¼
vx êx þ vz êz, and the dynamical pressure, p; t being the time coordi-
nate. These equations are made dimensionless upon using charac-
teristic scales, L for the length (physical size of the cavity), V for
the velocity (driving-lid maximum velocity), P ¼ lV

L for the pres-
sure, l being the dynamic viscosity of the fluid, and L

V for the time

scale. The Reynolds number is Re ¼ qVL
l , where q is the fluid density.

These equations are closed by taking into account the no-slip
conditions for the velocity which are indicated in Fig. 1. There is
no boundary condition to impose on the pressure.

It is easy to check the following mirror-symmetry property

about the z-centerline: if ~vð1Þðx; zÞ ¼ v ð1Þx ðx; zÞ êx þ v ð1Þz ðx; zÞ êz and
pð1Þðx; zÞ are a solution of the problem (2.1) and (2.2) which satis-
fies the no-slip boundary conditions, then there exists another
solution, symmetrical of the first one about the z-centerline,

viz., ~vð2Þðx; zÞ ¼ v ð1Þx ðx; 1� zÞ êx � v ð1Þz ðx; 1� zÞ êz and pð2Þðx; zÞ ¼
pð1Þðx; 1� zÞ. The Stokes flow, i.e., the solution of the steady linear
problem posed with Re ¼ 0, is unique and self-symmetric, imply-
ing that vxðx; zÞ ¼ vxðx; 1� zÞ and vzðx; zÞ ¼ �vzðx; 1� zÞ. This
leads to predict the existence of Navier–Stokes solutions which
are also self-symmetrical. However non-symmetrical Navier–
Stokes solutions are also allowed on account of the non-linearity
of the problem. There is no systematical way to determine exhaus-
tively all these solutions. One pair of non-symmetrical solutions,
~vð1Þðx; zÞ and~vð2Þðx; zÞwill be identified and described in Section 5.

3. Numerical method

Eq. (2.1) is time integrated by using a usual second-order
finite-difference scheme, the diffusion term being implicitly trea-
ted in time with the convective term explicitly evaluated. The
resulting spatial problem is discretized by Chebyshev collocation
based on Nx and Nz Gauss–Lobatto points along the x- and z-direc-
tions, respectively. The uncoupling between the velocity and pres-
sure fields is performed from Eq. (2.2) by the method of
Projection-Diffusion, [6]. It leads to an elliptic operator acting on
the pressure which is solved by Successive Diagonalization,
[16,12], a technique which is also used for inverting the
Helmholtz problem posed for the velocity components. All the
numerical details are presented in [14,11]. The numerical results
are obtained via the nodal values (on a Gauss–Lobatto grid) of
the polynomial approximation of the velocity and pressure fields
evaluated at successive times. These polynomials are denoted by
�ðkÞðx; zÞ � �ðt ¼ kdt; x; zÞ where �ðt; x; zÞ stands for the numeri-
cal approximation of p; vx and vz. The numerical fields which are

Fig. 1. The dimensionless 2D symmetric two-sided lid-driven cavity.
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