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a b s t r a c t

A low diffusion flux splitting method capable of capturing crisp shock profile and exact contact surface is
presented. Here, the flux vector of the Euler equations is split into convective and pressure parts follow-
ing Toro–Vázquez formulation. The low diffusive property of the present scheme is brought about by
adding an anti-diffusion term to the pressure parts. This numerical method can be regarded as an
improved version of Toro and Vázquez’s flux splitting schemes (i.e. TV and TV-AWS) which are found
to produce shock instabilities and carbuncle phenomena. Numerical results for several carefully chosen
one- and two-dimensional test problems are investigated to demonstrate the accuracy and robustness of
the proposed scheme.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The high speed flow problems usually involve complex flow
phenomena, such as strong shock waves, shock–shock interactions
and shear layers [1]. Prediction of these problems requires robust,
efficient and accurate numerical methods. Upwind methods are
considered as the most appropriate numerical tools for predicting
high speed flows, which are usually classified as flux difference
splitting (FDS) and flux vector splitting (FVS) methods.

The FDS scheme is based on the difference between the decom-
position of fluxes, constructed on either exact or approximate solu-
tions of the local Riemann problem between two adjacent states
[1]. These methods have been found to give good performance
on capturing the discontinuities represented by linear as well as
non-linear waves. One of the most efficient and robust approxi-
mate FDS methods is the HLL Riemann solver proposed by
Harten et al. [2]. It approximates the solution of Riemann problem
with two signal waves. Einfeldt [3], who proposed various ways of
computing the wave speeds has shown that this scheme (denoted
by HLLE) satisfies many important properties such as positivity and
entropy conditions. However it cannot resolve contact discontinu-
ities due to its highly dissipative behavior. Several attempts have
been made to improve its capability to resolve discontinuities rep-
resented by linear waves. Einfeldt modified the HLLE scheme (i.e.
HLLEM) to improve the resolution of contact discontinuity by reus-
ing the information of contact discontinuity in terms of modifying
the intermediate state [4]. However, it has been reported that the

HLLEM is less accurate than the Roe’s flux scheme which captures
the isolated stationary contact perfectly. Park [5] analyzed the dis-
sipation mechanism of the HLLEM scheme and discussed the cause
of inaccuracy at the contact discontinuity. He proposed another
improved version of the HLLE scheme which was capable of cap-
turing contact discontinuity accurately. Unfortunately, both the
modified versions of the HLLE scheme are found to produce unac-
ceptable results like low frequency post shock fluctuations in case
of slowly moving shock, carbuncle phenomenon, odd–even decou-
pling and kinked Mach stem on certain occasions. The HLLC
method is another contact-preserving HLL-type scheme which also
possesses all desirable properties like positivity and entropy condi-
tions [6]. However, it also encounters several shock instability
problems mentioned previously.

The FVS methods have been found to be free from shock insta-
bilities and carbuncle phenomena. These methods rely on a
decomposition of the flux vector into upstream and downstream
components according to the sign of the propagation of the associ-
ated waves. They are found to perform perfectly on capturing
steady discontinuities represented by nonlinear waves, which
include shocks. However, they are not effective in resolving inter-
mediate characteristic fields and this insufficient badly affects the
correct resolution of contact waves, material interfaces, shear
waves, vortices and ignition fronts [7]. A lot of attempts have been
made to improve the capability of the FVS methods to capture con-
tact discontinuities while being free from numerical shock insta-
bility problems. Another class of flux vector splitting type
methods has been attracting extensive attentions during the past
two decades, which combines features from the flux vector split-
ting and Godunov approaches. One typical example is Liou and
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Steffen’s AUSM scheme [8]. Further developments can be seen in
Refs. [9–11]. Another flux vector splitting scheme analogous to
the AUSM scheme is that presented by Zha and Bilgen [12]. The
total flux vector for these methods is split into a convective compo-
nent and a pressure component following the guideline that the
velocity and pressure should be separated to consider their charac-
teristics representing the physics of the convection and waves [13].
Recently, Toro and Vázquez-Cendón proposed two flux splitting
methods which are based on a new type of flux splitting formula-
tion [7]. The numerical schemes, named TV and TV-AWS, are
reported to enjoy a desirable property: recognition of contact
and shear waves in general and exact preservation of isolated sta-
tionary contacts. However, their methods are also found to pro-
duce shock instabilities and carbuncle phenomenon in the case
where strong shock waves exist. The difference among Liou and
Steffen’s, Zha and Bilgen’s and Toro and Vázquez’s splitting meth-
ods is in the convective quantity in the energy equation: total
enthalpy in Liou–Steffen, total energy in Zha–Bilgen and kinetic
energy in the Toro–Vázquez splitting. Considering the different
propagation mechanism of the convective terms and pressure
terms, Toro and Vázquez’s splitting seems to be more reasonable
compared with other two methods because all the pressure terms
are included in the pressure flux.

This paper is concerned with a new flux splitting scheme based
on Toro–Vázquez splitting, which is supposed to give more accu-
rate, robust and even efficient solutions for inviscid compressible
flows when compared with Toro and Vázquez’s original methods
(i.e. TV and TV-AWS) [7]. What should be noted is that the new flux
splitting scheme (denoted by present) in this paper means a new
numerical scheme to treat Toro–Vázquez splitting, while the TV
and TV-AWS represent TV and TV-AWS schemes for the Toro–
Vázquez flux splitting. In the new flux splitting scheme, the con-
vective parts of the flux vector are dealt with a modified version
of Mandal and Panwar’s approach [14]. The pressure components
of the flux vector are evaluated based on the HLL-type Riemann
solver. In order to make the numerical scheme low diffusive, an
anti-diffusion term is added to the pressure parts in a way similar
to the HLLEM method. The anti-diffusion coefficients are carefully
designed to make all the dissipation vanish at the contact discon-
tinuity. So the numerical method proposed is also more accurate
than other HLL-type Riemann solvers such as the HLL and its mod-
ified version HLLEM scheme. Results of massive numerical tests
show that the new method is also free from shock instabilities
and carbuncle phenomena which confuse most of the shock-cap-
turing schemes that are designed to preserve contact discontinu-
ities. In this paper, we fix our attention on the first-order case, as
there are several approaches to extend first-order methods to high
order of accuracy.

The paper is structured as follows. Section 2 briefly reviews the
Euler equations and Toro–Vázquez splitting method. Section 3 pre-
sents a detailed description of the new low diffusion scheme.
Detailed analysis on the numerical dissipation mechanism of the
new scheme is given in Section 4. In Section 5 we present numer-
ical results for several carefully selected test problems to assess
both robustness and accuracy of the scheme proposed in this
paper. Finally, conclusion remarks are given in Section 6.

2. Preliminaries

2.1. Governing equations

The two-dimensional Euler equations written in integral formu-
lation are as follows:

@
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FdS ¼ 0 ð1Þ

where Q and F(Q, n) are the vectors of conservative variables and
conservative fluxes, both given by

Q ¼

q
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qv
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The contravariant velocity U is defined as the scalar product of the
velocity vector u and the unit normal vector n, i.e.,

U � u � n ¼ nxuþ nyv ð3Þ

The equation of state has the form as follows:

p ¼ ðc� 1Þq E� 1
2
ðu2 þ v2Þ

� �
ð4Þ

where the specific heat ratio c is 1.4 for a perfect gas.
The finite volume discretization of (1) can be written as

Q nþ1
i;j ¼ Q n

i;j �
Dt
Xi;j

XNF

m¼1

FmDSm ð5Þ

DSm is the edge length, NF is the number of edges enclosing the 2D
finite volume Xi,j.

2.2. The Toro–Vázquez splitting

In the present approach, the flux vector F(Q, n) is split into a
convective part and a pressure part following Toro and Vázquez’s
formulation

FðQ ;nÞ ¼ CðQ ;nÞ þ PðQ ;nÞ ð6Þ

with

CðQ ;nÞ ¼ U
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It should be noted that no pressure terms exist in the proposed con-
vective flux C(Q, n). All pressure terms from the total flux vector
F(Q, n), including that of the total energy E, are included in the pres-
sure flux P(Q, n) [7]. The information of the convective terms is
transported in the direction as the velocity U goes, and the informa-
tion of the pressure terms propagates in all directions at the speed
of sound a which is introduced as

a2 ¼ cp
q

ð8Þ

3. The low diffusion scheme

We give a detailed description of the new low diffusion scheme
here. Since the total flux vector has been split into a convective
component and a pressure component, the numerical treatment
for each part has been described separately. We start with the con-
vective system.

3.1. Evaluation of the convective flux

The flux vector C(Q, n) is computed by a modified version of
Mandal and Panwar’s method [14]. Here, we give a brief descrip-
tion of their technique used to deal with the convective flux. For
a detailed description of the numerical treatment of the convective
flux see the original paper of Mandal and Panwar [14].
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