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a b s t r a c t

In this study we revisit the problem of computing steady Navier–Stokes flows in two-dimensional
unbounded domains. Precise quantitative characterization of such flows in the high-Reynolds number
limit remains an open problem of theoretical fluid dynamics. Following a review of key mathematical
properties of such solutions related to the slow decay of the velocity field at large distances from the
obstacle, we develop and carefully validate a spectrally-accurate computational approach which ensures
the correct behavior of the solution at infinity. In the proposed method the numerical solution is defined
on the entire unbounded domain without the need to truncate this domain to a finite box with some arti-
ficial boundary conditions prescribed at its boundaries. Since our approach relies on the streamfunction–
vorticity formulation, the main complication is the presence of a discontinuity in the streamfunction field
at infinity which is related to the slow decay of this field. We demonstrate how this difficulty can be over-
come by reformulating the problem using a suitable background ‘‘skeleton’’ field expressed in terms of
the corresponding Oseen flow combined with spectral filtering. The method is thoroughly validated for
Reynolds numbers spanning two orders of magnitude with the results comparing favorably against
known theoretical predictions and the data available in the literature.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this work we revisit the classical problem of computing
steady flows past an obstacle in an unbounded domain which
has played an important role in theoretical fluid mechanics, espe-
cially, in the study of separated flows [49]. An aspect of this prob-
lem which has received particular attention is the structure of the
flow field in the limit when the Reynolds number Re!1. It is well
known that the inviscid Euler flows in the same geometric setting
admit several different solutions with quite distinct properties – in
addition to the Kirchhoff free-streamline flows featuring an open
wake region extending to infinity [43,12], flows with compact vor-
ticity regions predicted by the Prandtl–Batchelor theory [4] have
also been found [20]. Perturbation-type solutions to this problem
were constructed using methods of asymptotic analysis by
Chernyshenko [14,15]. While these solutions remain the most
advanced theoretical results concerning this problem, their com-
putational validation for large Re remains an open problem with
Fornberg’s results from the late 1980s still representing the
state-of-the-art [24,25]. As will be argued below, what makes this

problem challenging from the computational point of view is the
combination of steadiness and an unbounded domain which
results in a very slow decay of the flow fields towards their limiting
values at large distances from the obstacle. In the recent years sig-
nificant advances have been made as regards mathematical charac-
terization of such flows [30], and the goal of this work is to develop
and validate a numerical approach which explicitly accounts for
these properties. More specifically, the proposed technique will
achieve the spectral accuracy for solutions defined on unbounded
domains (i.e., without the need to truncate the domain to a finite
‘‘computational box’’ with some artificial boundary conditions pre-
scribed on its boundaries) and will in addition ensure that solu-
tions have the right asymptotic behavior at large distances from
the obstacle.

We thus consider the problem defined on the two-dimensional
(2D) unbounded domain X which is the exterior of a circular obsta-
cle A of diameter d (Fig. 1). Given the free stream velocity at infinity
U1, the system of equations we are interested in is

ðv � rÞv ¼ �rpþ 1
Re

Dv in X; ð1aÞ

r � v ¼ 0 in X; ð1bÞ
v ¼ 0 on @A; ð1cÞ
v ! U1ex as jxj ! 1; ð1dÞ
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where v ¼ ½u; v� is the velocity vector, p is pressure, ex is the unit
vector associated with the X-axis, x ¼ ½x; y� 2 X is the position vec-
tor and Re :¼ U1d=m is the Reynolds number in which m is the kine-
matic viscosity (for simplicity, the fluid density is set equal to one).
The symbol ‘‘:¼’’ means ‘‘equal to by definition’’. Mathematical ana-
lysis of problem (1), which was initiated by Leray in the 1930s [42]
and continued by Finn in the 1960s [21–23], is surveyed in the
monograph by Galdi [30]. It reveals a number of interesting proper-
ties related to the behavior of the velocity field at large distances
from the obstacle which is quite distinct from the corresponding
time-dependent flows. More precisely, steady 2D flows described
by (1) feature a ‘‘wake’’ region in the direction of the X-axis, cf.
Fig. 1, in which the velocity field v approaches its asymptotic value
U1ex much slower than outside this region, namely at the rate

jvðxÞ � U1exj ¼ Oðjxj�1=4��Þ as jxj ! 1; ð2Þ

where � > 0. Solutions of this type were referred to by Finn as
‘‘physically reasonable’’ (PR) [21] and have the additional property
that to the leading order they have the same behavior at large dis-
tances as the solutions of the corresponding Oseen problem charac-
terized by the same drag force [30], i.e.,

vðxÞ ¼ U1ex þ F � EðxÞ þ VðxÞ as jxj ! 1; ð3Þ

where F ¼ ½Fx Fy�T is the hydrodynamic force acting on the obstacle
A; EðxÞ is the fundamental solution tensor for the Oseen system

ðU1exÞ � $uþ $p� 1
Re

Du ¼ 0 in X; ð4aÞ

$ � u ¼ 0 in X; ð4bÞ
u ¼ 0 on @A; ð4cÞ
u ! u1 as jxj ! 1; ð4dÞ

and the ‘‘remainder’’ VðxÞ satisfies the following asymptotic
estimate

VðxÞ ¼ Oðjxj�1log2jxjÞ as jxj ! 1: ð5Þ

In other words, at large distances from the obstacle the PR solutions
are up to a rapidly vanishing correction indistinguishable from the
Oseen flows exhibiting the same drag F. Finn and Smith [22]
showed that for small Reynolds numbers problem (1) has at least
one solution that is physically reasonable. While it remains to be
proven whether steady Navier–Stokes system (1) has solutions for
all values of the Reynolds number, for now we will assume that at
least one solution exists for all finite Reynolds numbers. In addition
to making the numerical solution of problem (1) more challenging,
the properties discussed above also complicate evaluation of the
hydrodynamic forces [47].

The first calculation of a steady flow around a circular cylinder
was carried out by Thom [51] for low Reynolds numbers
(Re ¼ 10� 20) using the streamfunction–vorticity formulation.

An interesting aspect of that research was the use of a conformal
mapping. The simulations performed by Kawaguti [37] and by
Apelt [3] for the Reynolds number up to 44 showed a linear growth
of the vortex pair behind the cylinder with Re. Allen and Southwell
[1] introduced upwind schemes to computational fluid dynamics
when solving steady flows for Reynolds numbers up to 1000.
Their solutions showed a trend of reduced recirculation length
for the Reynolds number increasing from 10 to 100. The results
of Hamielec and Raal [35] also indicated that the recirculation
length decreased for Reynolds number larger than 50. We remark
that, as discussed below, these results are now believed to be erro-
neous. Keller [38] and Takami [50] combined conformal mappings
with finite-difference methods to solve steady flows around the
cylinder for the Reynolds number up to 15, whereas a spectral
method for the study of the stability of flows in unbounded
domains was developed by Zebib [56]. These earlier investigations
are reviewed in the historical survey by Fornberg [27]. Many
numerical difficulties in solving system (1) stem from the fact that
the unbounded domain X needed to be truncated to a finite com-
putational box and it is not immediately obvious what boundary
conditions must be prescribed on its boundary to ensure the solu-
tions exhibit the correct asymptotic behavior given in (2) and (3).

The significance of the far-field boundary conditions was
already recognized by Fornberg [25] who observed that the use
of the free-stream values on the outer boundary of the computa-
tional domain produced large errors even for low Reynolds num-
ber. We note, however, that Fornberg considered the free-stream
values for the streamfunction only while setting the vorticity equal
to zero. In the numerical results of Fornberg [25] the length of the
recirculation zone appears proportional to the Reynolds number.
The recirculation width, however, exhibits different behavior
depending on the Reynolds number: for Re / 300 the width
appears proportional to the square root of the Reynolds number;
on the other hand, for Re ’ 300 the relation is linear. This behavior
is also reflected in the different flow patterns observed in the two
regimes with the flows obtained for Re / 300 featuring a slender
wake reminiscent of the Kirchhoff free-streamline solution
([40,43], see Fig. 2a) and those corresponding to Re ’ 300 charac-
terized by a wider recirculation region more similar to the
Prandtl–Batchelor limiting solution ([4], see Fig. 2b). Thus,
although Fornberg’s solutions [25] still represent the state-of-
the-art in this field, they are rather inconclusive as regards the
solution structure at large distances in the high-Reynolds number
limit. There exist more recent results concerning two dimensional
steady-state flows past obstacles, but they involve different con-
figurations such as flows past arrays of obstacles as in [26,29],
flows past obstacles in channels [48], or flows of stratified fluids
[16].

The question of consistent boundary condition imposed on the
boundaries of the computational domain was recently taken up by
Bönisch et al. [6–8]. As will be discussed below, they devised an
adaptive approach in which the corrections to the free-stream
are consistent with (3) and depend on the force experienced by
the obstacle. More recent attempts at solving problem (1),
although not necessarily focusing on obtaining solutions in the
high-Re limit, include [54,17,31] with study [31] containing certain
similar ideas to those investigated here. In the context of time-de-
pendent flows, the question of surrogate boundary conditions on
truncated domains was recently also addressed in [19].

The main contribution of our study is development of a spec-
trally-accurate solution method based on the streamfunction–vor-
ticity formulation ensuring that asymptotic condition (3) is
satisfied. As discussed below, the key technical difficulty in this
approach is the resolution of the singularity appearing at infinity
in the streamfunction field which is achieved through a suitable
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Fig. 1. Geometry of the flow domain X with a schematic representation of the wake
region (shaded) characterized by the slow decay of the flow field to its asymptotic
values.
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