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a b s t r a c t

Good measures of the turbulence structure are important for turbulence modeling, flow diagnostics and
analysis. Structure information is complementary to the componentality anisotropy that the Reynolds
stress tensor carries, and because structures extend in space, structure information is inherently non-
local. Given access to instantaneous snapshots of a turbulence field or two-point statistical correlations,
one can extract the structural features of the turbulence. However, this process tends to be computation-
ally expensive and cumbersome. Therefore, one-point statistical measures of the structural characteris-
tics of turbulence are desirable. The turbulence structure tensors are one-point statistical descriptors of
the non-local characteristics of the turbulence structure and form the mathematical framework for con-
structing Structure-Based Models (SBM) of turbulence. Despite the promise held by SBM, the tensors
have so far been available only in a small number of DNS databases of rather simple canonical flows. This
inhibits further SBM development and discourages the use of the tensors for flow analysis and diagnos-
tics. The lack of a clear numerical recipe for computing the tensors in complex domains is one the reasons
for the scarce reporting of the structure tensors in DNS databases. In particular, the imposition of proper
boundary conditions in complex geometries is non-trivial. In this work, we provide for the first a time a
rigorous and well-documented description of a mathematical and computational framework that can be
used for the calculation of the structure tensors in arbitrary turbulent flow configurations.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Background

Far from being equivalent to white noise, the turbulent motion
of fluids is organized in the form of coherent structures, often given
the label ‘eddies’. In high Reynolds number flows, the size of the
turbulence eddies can span several orders of magnitude. In these
flows, the small-scale structure is thought to be effectively
shielded from external forcing and thus exhibits a significant
degree of isotropy as a result. It is further assumed that the role
of the smaller eddies is primarily to dissipate the turbulence
energy. The larger energy-containing structures, on the other hand,
are both shaped by and play a role in determining the response of
turbulence to external deformation. They are dynamically active.
The footprint of these large energy-containing turbulence eddies
is reflected in the turbulence statistics. Quantitative measures
of turbulence structure are easily constructed using two-point

correlations, but such descriptions tend to be rather costly and
impractical for engineering application, which relies heavily on
one-point formulations. Hence, one-point measures of turbulence
structure are needed. Kassinos and Reynolds [15] were the first
to develop a comprehensive one-point mathematical formulation
that can be used to quantify different aspects of the energy
containing turbulence structures. They proceeded to propose the
use of the one-point turbulence structure tensors in turbulence
modeling and for flow diagnostics, which they described in
[7,15,16]. In this regard, they showed that it is possible for two
turbulence fields to share the same componentality state, i.e. to
have the same Reynolds stress tensor values, but yet have different
underlying turbulence structure. Differences in the turbulence
structure, although undetectable through the componentality
information, lead to different dynamic behavior of the turbulence,
for example in response to external deformation. Hence, a
complete one-point description of the turbulence requires the
information contained in the structure tensors. Namely, the
structure dimensionality Dij gives information about the directions
of independence in the turbulence, the structure circulicity Fij

gives information on the large scale circulation in the flow, and
the inhomogeneity Cij gives the degree of inhomogeneity of the
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turbulence. The third-rank stropholysis Q ijk becomes important
when mean rotation breaks the reflectional symmetry of the turbu-
lence. Exact definitions of these tensors are given in the next section.

One-point turbulence models that use only the Reynolds stres-
ses and the turbulence scales to characterize the turbulence are
fundamentally incomplete [15]. This applies to both simple eddy-
viscosity closures and to Reynolds Stress Transport (RST) models
and it is particularly problematic when the mean deformation
includes strong mean or frame rotation. For example, in this case,
the dynamic response of nearly isotropic turbulence is very
different from that of turbulence with strongly organized two-
dimensional structures and turbulence models should be able to
distinguish between the two. Without ad hoc modifications, most
turbulence closures, however, fail to do that because they are
insensitive to the structural characteristics of the turbulence. Fur-
thermore, turbulence models should incorporate the breaking of
reflectional symmetry whenever mean or frame rotation can
dynamically affect the flow (flow through axisymmetric diffuser
or nozzle with swirl, flow through turbomachinery). These afore-
mentioned effects are nonlocal in nature, yet they can be addressed
via the one-point structure tensors, which is the main feature of
the tensors that makes them particularly attractive in engineering
practice.

Structure-Based turbulence Models (SBMs) [11,13,15,16,20] are
a class of turbulence models that make use of the one-point turbu-
lence tensors. SBMs hold promise for resolving some of the limita-
tions described above. However, an obstacle in the further
development of structure-based models has been the relatively
scarce availability of data from simulations and experiments that
could be used for model validation. On one hand, the one-point
structure tensors are not easily available from experiments. Hence,
one normally has to turn to direct (DNS) or large eddy simulations
(LES) for obtaining data on the tensors. Even in this case, however,
the specification of proper boundary conditions for the computa-
tion of the structure tensors has so far been considered only in
the simplest geometries, e.g. fully-developed channel flow and free
shear flows [16]. The underlying ambiguity over how one can com-
pute the tensors in complex domains has discouraged the more
widespread inclusion of the tensors in turbulence databases. This
in turn has hurt the development of structure-based models and
also prevented the more widespread use of the tensors as flow
diagnostics. As SBM testing and validation progresses to complex
flow configurations this limitation becomes more pressing.

The purpose of this work is to present a clear framework for the
numerical computation of the structure tensors in arbitrarily com-
plex geometries using DNS or LES data. We believe that this contri-
bution will encourage the inclusion of the structure tensors in DNS
databases, thus accelerating the development of structure-based
models and encouraging the use of one-point structure tensors as
flow diagnostic tools.

1.2. Definition of the structure tensors

The structure tensors are determined through the turbulent
stream vector w0i, defined by the equations [16]

u0i ¼ �ijkw
0
k;j w0k;k ¼ 0 w0i;kk ¼ �x0i; ð1Þ

where u0i and x0i are the fluctuating velocity and vorticity compo-
nents, and �ijk is the Levi–Civita alternating tensor. To complete
the stream vector definition suitable boundary conditions must be
supplied. Hereafter, a comma followed by an index denotes partial
differentiation with respect to the implied coordinate direction. The
Einstein summation convention is implied on repeated Roman, but
not on Greek indices. Note that w0i satisfies a Poisson equation and
hence carries non-local information. As will be shown, the diver-

gence-free condition on w0i is important for the physical meaning
of the resulting structure tensors. The focus of this paper is a general
strategy for solving (1) in complex domains, thus making possible
the computation of the structure tensors in practical flow configurations.

Expressing the definition of the Reynolds stresses in terms of
the fluctuating stream vector,

Rij ¼ u0iu
0
j ¼ �ipq�jrsw

0
q;pw

0
s;r; ð2Þ

and using the identity

�ipq�jrs ¼ det
dij dir dis

dpj dpr dps

dqj dqr dqs

0
B@

1
CA; ð3Þ

leads to the constitutive relation

Rij þ Dij þ Fij � ðCij þ CjiÞ ¼ dijq2; ð4Þ

where q2 ¼ Rkk ¼ 2k is twice the turbulent kinetic energy. Based on
this equation, the second-rank structure tensors are defined as

Componentality Rij ¼ u0iu
0
j rij ¼ Rij=Rkk ~rij ¼ rij � dij=3; ð5aÞ

Dimensionality Dij ¼ w0k;iw
0
k;j dij ¼ Dij=Dkk

~dij ¼ dij � dij=3; ð5bÞ

Circulicity Fij ¼ w0i;kw
0
j;k f ij ¼ Fij=Fkk

~f ij ¼ f ij � dij=3; ð5cÞ

Inhomogeneity Cij ¼ w0i;kw
0
k;j cij ¼ Cij=Dkk ~cij ¼ cij � ckkdij=3: ð5dÞ

Unlike the other structure tensors, the inhomogeneity Cij is not
positive semi-definite and thus the trace Ckk ¼ Dkk � Rkk can be neg-
ative or even zero. For this reason, Cij is normalized in terms of the
trace Dkk ¼ Fkk. Another possibility would have been to normalize
all structure tensors with the trace Rkk, but this choice is ill-defined
on solid boundaries, where Rkk is zero. On the contrary, Dkk is non-
zero at the walls and proves to be the most meaningful choice for
normalizing all the structure tensors.

A detailed discussion of the physical meaning of each structure
tensor is given in [16], but the key features are recounted here.
While the structure tensors carry complementary information,
the constitutive equation provides a linear dependence among
them, thus any one of the tensors can be reconstructed if the rest
are known. The componentality Rij (the Reynolds stress tensor)
gives information about which components of the fluctuating
velocity are more energetic. The dimensionality Dij carries informa-
tion about the directions of independence of the turbulence. This
can be easily seen based on the definition of Dij, since gradients
of the stream vector tend to vanish along directions of strong struc-
ture elongation and tend to be strongest along directions in which
short structures are stacked. The circulicity Fij defines the directions
with large-scale circulation concentrated around them. Finally, the
inhomogeneity Cij gives the directions of inhomogeneity of the tur-
bulence. In fact, the inhomogeneity tensor vanishes identically in
homogeneous flows, as can be shown by recasting the inhomoge-
neity definition into the form

Cij ¼ ðw0iw
0
k;jÞ;k � w0iw

0
k;kj: ð6Þ

Here, the first term is zero only in homogeneous flows, while the
second term is always zero due to the specific choice wk;k ¼ 0. The
inhomogeneity is significant near solid boundaries and relaxes to
zero far away from them. At intermediate distances form the wall,
the magnitude of Cij becomes small compared to that of the other
structure tensors. Since little is known on how to model Cij in gen-
eral flows, structure-based turbulence models, such as the Algebraic
Structure-Based Model (ASBM) [2,14,17,22], are based on the
homogenized tensors. These are obtained by absorbing Cij inside
Dij and Fij,
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