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a b s t r a c t

In compressible flow computations, an important treatment for absorbing boundary condition (ABC) is to
create a matched layer at the boundary, as in the well-known PML (perfectly matched layer) method. In
the present paper, it is shown that with cell-centered finite volume (FV) schemes, the matched layer can
be captured directly as a discontinuity across the absorbing boundary, rendering an extremely simple yet
robust ABC. The new ABC is inherently embedded in FV schemes of cell-centered type, and often associ-
ated with the captured matched layer, which serves to match the flow variables across the boundary. It
has been used empirically for years and was found to have no direct relation to any existing nonreflecting
boundary condition (NRBC). Instead, it is attributed to the shock-capturing capability of the FV scheme, as
well as a nonreflecting (NR) observation that for any scheme, no spurious reflection is generated at any
interior point of the domain. A Fourier analysis with plane waves is employed to the local Euler solution to
justify the NR observation and the ABC is consequently established.

The ABC performs perfectly with zero reflection in one dimensional space. In multi-dimensional spaces,
the phase error and reflection due to discretization are discussed. With appropriate grid resolution at the
boundary, one can always suppress the spurious reflection to any designated level. Several non-trivial
numerical examples in one and multi-dimensional spaces are tested to demonstrate its robustness.

� 2014 Published by Elsevier Ltd.

1. Introduction

Nonreflecting boundary conditions (NRBCs) play a key role in
fluid dynamics computations while remaining as a challenging
topic in the current research areas in engineering and applied
mathematics. Spurious reflections resulting from an inappropriate
numerical boundary condition contaminate the flow field and may
eventually spoil the entire computed flow. There have been a huge
number of literatures dealing with the topic of NRBC. Herein, we
focus only on the related issues of the absorbing boundary condi-
tion (ABC).

For a boundary with flow conditions specified, an ABC plays a
dual role: to enforce the given boundary conditions and to absorb
the wave or disturbance propagating from the domain interior. Usu-
ally, there are two ways to absorb the outgoing waves and to avoid
spurious reflections at the boundary. In one way, the given flow
boundary condition is modified to an admissible numerical bound-
ary condition, as in the characteristics-based NRBC (cf. e.g., [2]). In

the other way, a matched layer (or absorbing layer) is artificially cre-
ated at the boundary, which smoothly matches the inconsistent flow
data across the boundary. A typical work along this track is the
recent perfectly matched layer (PML) method (cf. e.g., [3–5]).

In recent years, another interesting ABC for finite volume (FV)
schemes was discovered empirically, e.g., Leveque [6] and Loh
et al. [7–10]. When the flow conditions prescribed at the ghost cell
centers (GCCs) do not match the flow within the domain, a
matched layer similar to the one in the PML method is automati-
cally captured at the boundary to do the matching, saving the work
of creating a matched layer or matching the flow data. The ABC is
hence extremely simple yet robust. The purpose of the present
paper is to examine and establish this new ABC for FV schemes.

Despite its attractive advantages, investigations show that the
new ABC does not seem to directly relate to any existing NRBC,
but should be credited to the shock-capturing capability of FV
schemes, as well as a well-accepted empirical observation that
no spurious reflection occurs at any interior point of the domain.
For brevity, hereafter, this observation will be called the nonre-
flecting observation or NR observation.

The contents are arranged as follows. First of all, Sections 2 and
3 present the theoretical work to prove the NR observation. In
Section 2, We begin with the introduction of a simple but
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unconventional concept of absorbing. Based on this concept, Fou-
rier analysis is conducted to the local Euler solution in Section 3
to justify the NR observation. If, by his/her own experience, the
reader would accept the NR observation for granted, Sections 2
and 3 may be temporarily skipped, as they are tedious and require
concepts in real analysis.

Section 4 shows that, due to a boundary treatment in cell-cen-
tered FV schemes, the NR observation can be extended and applied
to the boundary itself. The new ABC is then established based on
the shock-capturing capability of the FV schemes. With a one
dimensional example, the section illustrates how the ABC works
and the automatic capturing/creation of the associated absorbing
layer (matched layer).

The ABC was found working perfectly in one dimensional space
with zero reflection, but in multi-dimensional computations, lack
of sufficient grid resolution on the boundary may still introduce
spurious reflection. Section 5 is devoted to the phase error analysis
at a boundary element (a line segment or a surface element) in
multi-dimensional spaces, and the discussion of reflection coeffi-
cient. So that the spurious reflection can be suppressed to any des-
ignated level by choosing an appropriate grid resolution at the
boundary. In Section 6 the new ABC is tested in several non-trivial
examples in multi-dimensional spaces. Finally, the paper is con-
cluded with remarks in Section 7.

Throughout the paper, Vðx; tÞ ¼ ðq;u;v ;w; pÞT is employed to
represent the primitive flow variables in the solution of the three
dimensional Euler equations, where x; t; u; v ; w; q; p are
respectively the coordinates ðx; y; zÞ, time, the three velocity
components, density, and pressure. Wðx; tÞ ¼ ðq;qu;qv ;qw;qeÞT

represents the conservative flow variables, with the energy

e ¼ p
qðc� 1Þ þ

1
2
ðu2 þ v2 þw2Þ; c ¼ 1:4:

Uðx; tÞ represents a numerical solution or an approximation of
Vðx; tÞ.

2. Simple concept of absorbing

Our past investigations show that the new ABC cannot be
inferred from any existing NRBC. For further examination, a simple
but unconventional concept of absorbing is put forward as our def-
inition for absorbing. It is based on the plane waves in the theory of
linear partial differential equations [1], and is introduced below
step by step in a logical way by mathematical analysis. The term
‘‘local Euler solution’’ refers to the local analytical solution of the
Euler equations in a small neighborhood of an interior point in
the domain. No numerical solution is involved yet at this stage.

All the following conceptual discussions are focused in an infi-
nitely small neighborhood, X, of a point, x0 (or x0) in one or
multi-dimensional space.

1. First, consider a simple scalar sine wave defined on the real
axis:

f ðxÞ ¼ asinðbxþ cÞ; �1 < x <1; ð1Þ

where a; b; c are given real constants. The sine wave has the
simplest form of a wave, and is completely determined by its
amplitude, a, and its phase bxþ c. In X, no matter how x
approaches x0 (from left or right),

a ¼ const:; lim
x!x0�0

ðbxþ cÞ ¼ bx0 þ c; ð2Þ

the sine wave, i.e., its amplitude and phase, always remains
intact across x0, or no distortion occurs at x0. No distortion means
no spurious reflection. The sine wave is thus said to be absorbed at
x0 (in either direction). Here, ‘‘intact’’, ‘‘no distortion’’,

‘‘absorbed’’, and ‘‘no spurious reflection’’ are synonymous terms.
This forms the basic concept of absorbing for a sine wave at a
point x0.

2. Next, the above concept is extended to the most general case of
a vector plane wave (cf. [1], or Appendix B) in three-dimen-
sional space:

Vðk; x; tÞ ¼ eVðkÞeiðk�x�xtÞ; ð3Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

; x ¼ ðx; y; zÞ represents the position vector of a
point in three-dimensional space, k ¼ ðkx; ky; kzÞ is the given
wave number vector, with its real components, kx; ky, and kz.
The amplitude vector, eVðkÞ, and the angular frequency, x are
functions of k only (cf. [1], or Appendix B). They are constant
with k given. t is time, when the wave propagation pattern in
space is investigated, time is fixed at t ¼ t0. Like the simple sine
wave, Vðk; x; tÞ is completely determined by its amplitude eVðkÞ
and phase, h ¼ k � x�xt. Similar to (2),eVðkÞ ¼ const:; lim

x!x0
h ¼ k � x0 �xt0; ð4Þ

the vector plane wave, Vðk; x; t0Þ along with its amplitude and
phase, remains intact or is absorbed at any point x0, when x
approaches the point in any direction or path in its small neigh-
borhood, X.
This is the basic concept of absorbing for a single vector plane
wave.

3. Finally, let Vðx; t0Þ be a superposition of plane waves Vðk;x; t0Þ
of different wave numbers k, for example:

Vðx; t0Þ ¼
XN

n¼1

Vðkn;x; t0Þ; or

Vðx; t0Þ ¼
ZZZ

Vðk;x; t0Þ � dkxdkydkz; ð5Þ

where N is the number of plane waves, and the integral is carried
over a domain in the three-dimensional wave number space. As
each of these plane waves remains intact across a point x0, their
superposition, Vðx; t0Þ, is also regarded as remaining intact or
being absorbed at x0.

In summary, the concept of absorbing can be stated as follows:
If in a (infinitely) small neighborhood of a point, x0, the local Euler

solution can be expressed as a superposition of plane waves, it is
absorbed at this point.

It will be used to determine theoretically whether a local Euler
solution is absorbed at a point.

3. Fourier analysis of the local Euler solution

As in Section 2, the proof in this section is still theoretical, using
the concepts in real analysis. No numerical treatment is involved
yet. It will be shown theoretically that, at any interior point of the
computational domain, the local Euler solution, Vðx; t0Þ, and its
numerical approximation, Uðx; t0Þ, can be expressed as a superpo-
sition of plane waves. Hence they are absorbed, and the NR obser-
vation is proved. Here, by interior point, we mean a point
completely lying within the domain. Points at the domain bound-
ary or internal boundaries must be excluded, as at least a small
neighborhood of this point is required lying completely within
the domain.

3.1. Fourier analysis of the local Euler solution

To do so, Fourier analysis is conducted to the local Euler solu-
tion within an infinitely small neighborhood, X, of the given inte-
rior point, x0 ¼ ðx0; y0; z0Þ, in the following steps.
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