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a b s t r a c t

A 3D heterogeneous flow model which combines incompressible viscous flow and potential flow both
with free-surface boundaries is developed and solved numerically, using finite element method and
boundary element method, respectively. The coupled model is solved based on a nonoverlapping domain
decomposition method, which reduces the problem to the coupling interface. At the interface, the prob-
lem is equivalent to Bernoulli’s equation consisting of mappings from potential/velocity to velocity/pres-
sure. These mappings enable us to design the scheme following the Dirichlet–Neumann method for
nonoverlapping domain decomposition, and lead to a staggered scheme. We also discuss data transfer
as well as free surface reconstruction at the interface. Errors introduced by the surface reconstruction
technique are examined and discussed in detail. The errors from the first-order staggered scheme is also
studied. A comparison of numerical prediction with experimental data that the proposed method per-
forms efficiently and accurately for wave impact problems.

� 2014 Published by Elsevier Ltd.

1. Introduction

Gravity wave impact problems have been the subject of inves-
tigation in the past several decades, due to their challenging highly
nonlinear nature and importance in offshore engineering [1], naval
architecture [2] and coastal engineering [3]. Because of the tran-
sient nature of the problem and the arbitrary, complex geometry
of the structures in industrial applications, a time domain study
in physical space is required. Accompanied by advances in numer-
ical methods, techniques in modeling free-surface flows in the time
domain, such as the one pioneered by Longuet-Higgins and Cokelet
[4] in tracking free surface using the mixed-Eulerian–Lagrangian
method (MEL), have been gaining a steady interest. An integrated
simulation environment for wave-structure interaction, often
referred to as a numerical wave tank (NWT), assembles techniques
of modeling wave generation, propagation, dissipation and interac-
tion with structures. The past three decades have witnessed exten-
sive development and studies on this topic. The modeling
technique introduced in this paper is part of an on-going effort in
the development of a robust and practical NWT.

Regarding the modeling of flows in a NWT, two approaches
exist for the time domain wave simulation. The first and also the

most popular one, is to use the homogeneous flow, by which a sin-
gle model is used to describe the entire flow domain. The model
could be viscous flow, governed by the Navier–Stokes equations
(NSE), such as the work by Lin and Liu [5], Park et al. [6], Yuan
and Wu [7], and Li et al. [8]. It could also be a simplified model such
as potential flow (PF) or Boussinesq model, such as the work by
Beji and Battjes [9], Grilli et al. [10], Ryu et al. [11], Liu et al. [12]
and Nimmala et al. [13]. An extensive review of using PF solutions
to NWT using the boundary integral equation (BIE) approach is
given by Kim et al. [14].

In the second approach, the flow domain is decomposed into
multiple subdomains, and in each subdomain a different flow
model is adopted. This is sometimes referred to as a heterogeneous
flow model [15, chap. 8]. The motivation of this approach is of two
fold. First, the development of a large scale solver like NWT is often
based on legacy codes, frequently originated from other purposes.
For example, the wave generation/dissipation and viscous flow
solution techniques have separate origins in coastal engineering
and aerospace engineering, respectively. It is pointed out recently
that the approach of combining code bases from different fields
is the most common path taken by multiphysics solver developers,
because it reduces development overhead and takes advantage of
previous validations [16]. In the context of a NWT, such a
multiphysics model often contains a NSE solver coupled with
simplified models, such as a PF or a Boussinesq model, with the
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NSE describing the ‘‘near field’’ such as flow near a body or in the
shoaling zone, and the simplified models describing the ‘‘far field’’.
The second motivation of a heterogeneous flow model is to reduce
computing cost. It is well known that though a NSE numerical sol-
ver captures viscous and vortex effects that cannot be computed in
simplified models without empirical modeling parameters (see
e.g., [17]), its computing cost is rather high, due to the nonlinearity
and the propensity for instability induced by the incompressibility
condition. On the other hand, for far field wave propagation, sim-
plified models are sufficient and more efficient, as validated by
numerous works in the past century (see, e.g., [18,19]).

Because of the spatial decomposition the flow domain, the mod-
eling problem can be cast into the framework of (heterogeneous)
domain decomposition (DD) methods. Early works on numerical
applications of the DD methods include Bjørstad and Widlund
[20], Cambier et al. [21], Dinh et al. [22], Dryja [23] and Glowinski
et al. [24], among others. Recent overviews on this topic include
the reviews by Xu and Zou [25], Xu [26], the books by Mathew
[27], Quarteroni and Valli [15], Toselli and Widlund [28] and Wohl-
muth [29]. In particular, the well-posedness of the problems of NSE
coupled with Stokes flow or Oseen flow have been studied by
Fatone et al. [30,31], Feistauer and Schwab [32,33], and Schenk
and Hebeker [34].

Examples of the free surface flow numerical solvers based on
the DD approach include the work by Campana et al. [35], Iafrati
and Campana [36], Colicchio et al. [37], Sitanggang and Lynett
[38], Kim et al. [39], Hamilton and Yeung [40], and Zhang et al.
[41]. Among these works, all except [40] are 2D models. In [40],
a non-overlapping coupled 3D solver based on the scheme pro-
posed by Iafrati and Campana [36] is reported. In their study, the
solver adopts the method of Green’s function for the far field and
a pseudo-spectral method for the viscous subdomain. Since the
Green’s function used is specifically developed for an axial sym-
metric domain as in the problem of the interaction between waves
and a cylindrical structure, it is very efficient but also limited in
application. Moreover, the solver is limited to a linearized free-sur-
face boundary, and no wave generation is incorporated in the far
field model.

In this paper we present the progress made toward a 3D DD sol-
ver, based on our 2D development and theoretical study, reported
in Zhang et al. [41,42], respectively. In particular, the relationship
between the coupling scheme and the Dirichlet–Neumann (D–N)
method for a homogeneous elliptic problem [20,43] is discussed
in Zhang et al. [41]. The scheme is related to the solution for the
Schur’s complement formulation of the coupled problem, as dis-
cussed in Zhang et al. [42]. In this paper, we follow this D–N-like
approach, to study a 3D potential flow-viscous flow heterogeneous
model, with nonlinear free surface tracking/capturing capability.
The PF subdomain is solved using a boundary element method
(BEM), whereas NSE subdomain is solved using a finite element
method (FEM). The BEM solver is based on the work of Grilli
et al. [10,44], Fochesato and Dias [45], and Nimmala et al. [13].
The BIE from the Laplace equation is discretized using a collocation
BEM, and the linear system is solved using the generalized minimal
residual method (GMRES) accelerated by the fast multipole
method (FMM). On the other hand, the FEM solver for the NSE sub-
domain is based on a monolithic formulation and a pressure segre-
gation scheme, proposed by Soto et al. [46–48] and Codina [49–
51]. In this scheme, P1–P1 tetrahedron elements are used to dis-
cretize the domain. This type of element does not meet the Ladyz-
henskaya–Babuška–Brezzi (LBB) condition [52–54], and the
scheme provides stabilization toward pressure.

In the current study, we first further develop a 3D algorithm
and implement it to the 3D NWT model. This includes introducing
techniques for the interpolation and free surface matching at the
interface (Section 3.2 and 3.3). Moreover, a numerical analysis for

the error due to free-surface matching is performed on solitary
wave propagation (Section 3.3). To further improve the mathemat-
ical robustness of our method, in the current study we further
interpret the DD method using the Helmholtz decomposition,
and explore the nature of the matching conditions as well as the
corresponding operators (Section 4). A comparison of computing
time is also shown to demonstrate the efficiency of the proposed
method which was not examined in the previous 2D studies.

The rest of this paper is organized as follows. In Section 2 we
describe the coupled flow model. In Section 3, we introduce the
DD scheme based on two mappings, corresponding to the PF and
NSE solution, respectively. We also discuss numerical techniques
for data transfer and free surface reconstruction near the interface.
In Section 4, we explore the mathematical foundation of the cou-
pling scheme using the Helmholtz decomposition. In Section 5,
two numerical examples are reported to validate the 3D DD model.
In particular, we discuss spatial and temporal convergence of the
method, as well as its efficiency in terms of computing time. Fur-
ther discussions and conclusions are presented in Section 6.

2. Heterogeneous flow model

In our DD model, as shown in Fig. 1, the flow domain X � R3 is
decomposed into two non-overlapping subdomains XNSE and XPF,
within which incompressible viscous flow and potential flow mod-
els are adopted, respectively. C ¼ @XNSE \ @XPF is the interface
between the subdomains. Though only the case of two-subdomain
decomposition is presented in this paper, such philosophy applies
to cases with a more complex decomposition. In wave-structure
interaction applications, XPF denotes the ‘‘far field’’ and XNSE the
‘‘near field’’ of the domain, and the latter interacts with the struc-
ture domain(s). In this paper we focus on the initial impact of the
waves, and the numerical tests show that it suffices to model the
structures as rigid. Though C could be a general surface (2D man-
ifold), in our implementation a vertical surface in the Eulerian rep-
resentation is used for simplicity.

The governing equations for our heterogeneous model are

q
Du
Dt
¼ �rpþ lr2uþ f ; 8ðx; tÞ 2 XNSE � ½0; T�; ð1aÞ

r � u ¼ 0; 8ðx; tÞ 2 XNSE � ½0; T�; ð1bÞ
u ¼ u�; 8ðx; tÞ 2 ð@XNSE \ @X n Cf Þ � ½0; T�; ð1cÞ
r2u ¼ 0; 8ðx; tÞ 2 XPF � ½0; T�; ð1dÞ
@u
@n
¼ q�; 8ðx; tÞ 2 ð@XPF \ @X n Cf Þ � ½0; T�; ð1eÞ

Dx
Dt
¼ u; 8ðx; tÞ 2 Cf � ½0; T�; ð1fÞ

Du
Dt
¼ �gzþ 1

2
jruj2 � p�

q
8ðx; tÞ 2 Cf � ½0; T�; ð1gÞ

ru ¼ uNSE; 8ðx; tÞ 2 C� ½0; T�; ð1hÞ
@u
@t
þ 1

2
jruj2 þ gz ¼ � pNSE

q
; 8ðx; tÞ 2 C� ½0; T�; ð1iÞ

where the unknown variables ðu; p;uÞ are functions of spatial and
temporal coordinates ðx; tÞ, with u being velocity, p pressure and
u velocity potential. Fluid property includes density q and viscosity
l. Boldface symbols and superscript ‘‘�’’ indicate vectors and bound-
ary data, respectively. For a field quantity a; ai ¼ aji, i ¼‘‘NSE’’, ‘‘PF’’,
and aC ¼ ajC denote the corresponding restriction of a. Material
derivatives are denoted by D � =Dt. In Eq. (1), (1a) and (1b) are the
NSE, while Eq. (1d) is the governing equation for potential flow in
XPF. Velocity and flux boundary conditions are described in
Eqs. (1c) and (1e), respectively. In our implementation, either non-
slip or free-slip boundary conditions can be imposed on the walls
and bottoms (see Section 5 for details). Wave is generated with a
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