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a b s t r a c t

In a transformation method the numerical solution of a given boundary value problem is obtained by
solving one or more related initial value problems. This paper is concerned with the application of the
iterative transformation method to the Sakiadis problem. This method is an extension of the Töpfer’s
non-iterative algorithm developed as a simple way to solve the celebrated Blasius problem. As shown
by this author (Fazio, 1997) the method provides a simple numerical test for the existence and unique-
ness of solutions. Here we show how the method can be applied to problems with a homogeneous
boundary conditions at infinity and in particular we solve the Sakiadis problem of boundary layer theory.
Moreover, we show how to couple our method with Newton’s root-finder. The obtained numerical results
compare well with those available in literature. The main aim here is that any method developed for the
Blasius, or the Sakiadis, problem might be extended to more challenging or interesting problems. In this
context, the iterative transformation method has been recently applied to compute the normal and
reverse flow solutions of Stewartson for the Falkner–Skan model (Fazio, 2013).

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In a transformation method the numerical solution of a given
boundary value problem is obtained by solving one or more related
initial value problems (IVPs). In this context the classical example
is the Blasius problem of boundary layer theory. In the Blasius
problem the governing differential equation and the two initial
conditions are invariant under the scaling group of transformations

f � ¼ k�af ; g� ¼ kag; ð1:1Þ

where k is the group parameter and a – 0. Moreover, the non-
homogeneous asymptotic boundary condition is not invariant with
respect to (1.1). This kind of invariance was used by Töpfer [27] to
define a non-iterative transformation method (ITM) for the Blasius
problem by transforming the boundary conditions to initial condi-
tions and rescaling the obtained numerical solution.

This paper is concerned with the application of an ITM to the
Sakiadis problem. The main aim here is that any method developed
for the Blasius, or the Sakiadis, problem might be extended to more
challenging or interesting problems. In this context, the iterative
transformation method has been recently applied to compute the
normal and reverse flow solutions of Stewartson [25,26] for the
Falkner–Skan model [13].

The Sakiadis problem is a variant of Blasius problem that cannot
be solved by a non-ITM. In fact, one of the initial conditions is not

invariant and the asymptotic boundary condition, being homoge-
neous, is invariant with respect to the scaling transformations
(1.1). Therefore, as noted by Na [21, pp. 160-164], it is not possible
to rescale an initial value solution to the given asymptotic bound-
ary condition. Moreover, the non-ITM cannot be applied when the
governing differential equation is not invariant with respect to a
scaling group of point transformations. To overcome this drawback
the ITM was defined in [8,9] for the numerical solution of the Falk-
ner–Skan model and of other problems in boundary layer theory.

Here we show how the ITM can be applied to problems with a
homogeneous boundary conditions at infinity. Moreover, we show
how to couple our method with the Newton’s root-finder. This ITM
has been applied to several problems of interest: free boundary
problems [5,10], a moving boundary hyperbolic problem [7], the
Falkner–Skan equation in [8,9,13], one-dimensional parabolic
moving boundary problems [11,14], two variants of the Blasius
problem [12], namely: a boundary layer problem over moving
plates, studied first by Klemp and Acrivos [19], and a boundary
layer problem with slip boundary condition, that has found
application to the study of gas and liquid flows at the micro-scale
regime [4,20], a parabolic problem on unbounded domain [15].
Furthermore, as shown in [10], the ITM provides a simple
numerical test for the existence and uniqueness of solutions.

2. Blasius and Sakiadis problems

Within boundary-layer theory, the model describing the steady
plane flow of a fluid past a thin plate, is given by
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where the governing differential equations, namely conservation of
mass and momentum, are the steady-state 2D Navier–Stokes equa-
tions under the boundary layer approximations: u� v and the flow
has a very thin layer attached to the plate, u and v are the velocity
components of the fluid in the x and y direction, and m is the viscos-
ity of the fluid. The boundary conditions for the velocity field are

uðx;0Þ ¼ vðx;0Þ ¼ 0; uð0; yÞ ¼ U1;

uðx; yÞ ! U1 as y!1;
ð2:2Þ

for the Blasius flat plate flow problem [2], where U1 is the main-
stream velocity, and

uðx;0Þ ¼ Up; vðx;0Þ ¼ 0;
uðx; yÞ ! 0 as y!1;

ð2:3Þ

for the classical Sakiadis flat plate flow problem [23,24], where Up is
the plate velocity, respectively. The boundary conditions at y ¼ 0
are based on the assumption that neither slip nor mass transfer
are permitted at the plate whereas the remaining boundary
condition means that the velocity v tends to the main-stream
velocity U1 asymptotically or gives the prescribed velocity of the
plate Up. Introducing a similarity variable g and a dimensionless
stream function f ðgÞ as

g ¼ y
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we have
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and the equation of continuity, the first equation in (2.1), is satisfied
identically. On the other hand, we get
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mx
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Let us notice that, in the above equations U ¼ U1 represents Blasius
flow, whereas U ¼ Up indicates Sakiadis flow, respectively.

By inserting these expressions into the momentum equation,
the second equation in (2.1), we get

d3f
dg3 þ

1
2

f
d2f
dg2 ¼ 0; ð2:7Þ

to be considered along with the transformed boundary conditions

f ð0Þ ¼ df
dg
ð0Þ ¼ 0;

df
dg
ðgÞ ! 1 as g!1;

for the Blasius flow, and

f ð0Þ ¼ 0;
df
dg
ð0Þ ¼ 1;

df
dg
ðgÞ ! 0 as g!1;

for the Sakiadis flow, respectively.
Blasius main interest was to compute the value of the velocity

gradient at the plate (the wall shear or skin friction coefficient):

k ¼ d2f
dg2 ð0Þ:

To compute this value, Blasius used a formal series solution around
g ¼ 0 and an asymptotic expansions for large values of g, adjusting
the constant k so as to connect both expansions in a middle region.

In this way, Blasius obtained the (erroneous) bounds 0:3315 <
k < 0:33175.

A few years later, Töpfer [27] revised the work by Blasius and
solved numerically the Blasius problem, using a non-ITM. He
then arrived, without detailing his computations, at the value
k � 0:33206, contradicting the bounds reported by Blasius.

Indeed, Töpfer solved the IVP for the Blasius equation once. At
large but finite g�j , ordered so that g�j < g�jþ1, he computed the
corresponding scaling parameter kj. If two subsequent values of
kj agree within a specified accuracy, then k is approximately equal
to the common value of the kj, otherwise, he marched to a larger
value of g� and tried again. Using the classical fourth order
Runge–Kutta method, as given by Butcher [3, p. 166], and a grid
step Dg� ¼ 0:1 Töpfer was able, only by hand computations, to
determine k with an error less than 10�5. To this end he used
the two truncated boundaries g�1 ¼ 4 and g�2 ¼ 6. For the sake of sim-
plicity we follow Töpfer and apply some preliminary computational
tests to find a suitable value for the truncated boundary.

Sakiadis studied the behavior of boundary layer flow, due to a
moving flat plate immersed in an otherwise quiescent fluid,
[23,24]. He found that the wall shear is about 34% higher for the
Sakiadis flow compared to the Blasius case. Later, Tsou and
Goldstein [28] made an experimental and theoretical treatment of
Sakiadis problem to prove that such a flow is physically realizable.

3. Extension of Töpfer algorithm: the ITM

Within this section we explain how it is possible to extend Töp-
fer algorithm to the Sakiadis problem, that we rewrite here for the
reader convenience

d3f
dg3 þ

1
2

f
d2f
dg2 ¼ 0

f ð0Þ ¼ 0;
df
dg
ð0Þ ¼ 1;

df
dg
ðgÞ ! 0 as g!1:

ð3:1Þ

In order to define the ITM we introduce the extended problem

d3f
dg3 þ

1
2

f
d2f
dg2 ¼ 0

f ð0Þ ¼ 0;
df
dg
ð0Þ ¼ h1=2

;
df
dg
ðgÞ ! 1� h1=2 as g!1:

ð3:2Þ

In (3.2), the governing differential equation and the two initial con-
ditions are invariant, the asymptotic boundary condition is not
invariant, with respect to the extended scaling group

f � ¼ kf ; g� ¼ k�1g; h� ¼ k4h: ð3:3Þ

Moreover, it is worth noticing that the extended problem (3.2)
reduces to the Sakiadis problem (3.1) for h ¼ 1. This means that
in order to find a solution of the Sakiadis problem we have to find
a zero of the so-called transformation function

Cðh�Þ ¼ k�4h� � 1; ð3:4Þ

where the group parameter k is defined with the formula

k ¼ df �

dg�
ðg�1Þ þ h�1=2

� �1=2

; ð3:5Þ

and to this end we can use a root-finder method.
Let us notice that k and the transformation function are defined

implicitly by the solution of the IVP

d3f �
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þ 1

2
f �
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¼ 0
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d2f �
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ð0Þ ¼ �1:

ð3:6Þ
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