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a b s t r a c t

The steady state thermodynamic properties of a binary-phase shear fluid are studied quantitatively using
the compressible lattice Boltzmann BGK theory with mesoscopic inter-particle potentials. For the
Newtonian van der Waals fluid, numerical calculation shows that the effect of boundary shear on steady
state phase diagram of immiscible phases is negligible when the fluid is not in the near-critical region.
Streamlines show no penetration of macroscopic flow through the interface to cause the mass density
shift even when the boundary shear velocities are significant. The deformation of the droplets depends
on the shear rate and interfacial energy but the change of phase diagram during deformation is negligible.
In the near critical region, however, shear causes significant derivation in the phase diagram.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

There are two methods to calculate the phase diagram of mul-
tiphase materials. One takes the system free energy as a starting
point and minimizes its value to get the equilibrium thermody-
namic information. Most commercial thermodynamic code pack-
ages (e.g. Thermo_Calc and MTDATA) are based on such
approximation [1]. Another starts from the microscopic interac-
tions and calculates the relationship between the materials struc-
ture and thermodynamic properties, where equilibrium is a state
of dynamic balance. Molecular dynamics and ab initio are exam-
ples of this method [2]. For phase separation in shear flow, how-
ever, both methods encounter difficulty. On the one hand the
free energy for multiphase fluid under shear is lacked and hence
is impossible to use the free energy minimization method.
Hydrodynamics and thermodynamics affect each other, e.g. shear
enhances mass transfer but mass transfer is affected by the ther-
modynamic equilibrium. On the other hand a system showing
macroscopic hydrodynamic effect is too big to be calculated using
the microscopic interaction method. In this consideration,
meso-scale model is introduced to bridge the gap between
micro-scale and macro-scale computations. This allows studying
the systems where both thermodynamics and hydrodynamics are
equally important [3]. Many mesoscale models are based on meso-
scopic interparticle potential. There are two methods to derive
mesoscopic interparticle potential. One is called top-down method
where the parameters in the mesoscopic interparticle potential

ansatz are specified according to the macroscopic properties
[3,4]. Another is called bottom-up method where mesoscopic
interparticle potentials are obtained by coarse-grained microscopic
interactions [5,6]. The aim of the present work is to use a recent
developed mesoscopic interparticle potential to study the phase
equilibrium property of immiscible materials where phase separa-
tion takes place in shear flow [4].

Phase separation in shear flow has attracted considerable inter-
est for years due to its wide application in industry [7]. For exam-
ples, shear-induced demixing is expected to improve the oil
extraction where large amount of water is mixed with crude oil,
and shear-induced mixing is thought to be able to produce alu-
minum–lead alloys which are implemented to make wear parts
in automation industry. There are significant reports in literature
on the experimental observations of both shear-induced mixing
and shear-induced de-mixing [8,9]. However, the question of
whether the shear flow induces mixing or demixing inside a phase
is still a subject of debate. Theoretical models on the effect of inter-
active force on the phase separation are mainly based on the kinet-
ics such as internal degrees of freedom [10,11]. The fundamental
understanding of the phenomena is still at its early stage. The sit-
uation in same to the electric-field-induced phase separation, i.e.,
whether an electric field can induce mixing or demixing is still
unsolved [12,13]. This work aims to improve the understanding
of the effect of shear on the steady state phase diagram.

To the purpose of the present work, the lattice Boltzmann (LB)
model has been implemented to study the phase diagram of van
der Waals shear flow. LB model is a special kind of particle-based
computational technique in which particles are only allowed to
move from one lattice to another without falling in between. The
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earliest LB model was constructed by McNamara and Zanetti [14].
The spirit of LB model is to describe fluid by mapping the fluid
properties onto discrete lattices, while the physical state and prop-
erties at each grid are described by a set of particle distribution
functions {fi(r, t)}. The macroscopic fluid variables, for example
the density and velocity, are defined via moments of distribution
function. The evolution of the system toward its equilibrium is
through the relaxation of a particle distribution function to its
equilibrium form {fi

eq(r, t)} [15]. The equilibrium particle distribu-
tion function was originally constructed artificially but has been
put into a mathematically accurate scheme [16]. LB model has
now achieved a state of sophisticate and has been used in tackling
many problems successfully [17,18]. The mesoscopic interparticle
potential that possesses short-range strong Enskog repulsive and
long-range weak mean field attractive interactions has been
proved to be able to produce LB kinetic theory that is consistent
with thermodynamics [19]. For the van der Waals fluids, a
meso-scale interparticle potential has been derived and applied
to reproduce the accurate equilibrium phase diagram, convincing
interface property and irreversible thermodynamics [4]. It is possi-
ble to use the method to simulate the phase separation in shear
flow and to examine the steady state thermodynamic properties
quantitatively.

2. Modeling and theory

For a van der Waals fluid whose kinetic viscosity is g (viscosity
per density) and mass density distribution is q(r, t), fluid is con-
fined in a pair of parallel shear boundaries in a distance of h and
the top boundary moves toward right with a speed v~x and the bot-
tom boundary moves toward left with a speed�v~x, as illustrated in
Fig. 1. The shear rate is given by _c ¼ 2v=h. The fluid is Newtonian
and hence the kinetic viscosity is independent of the mass density.
The material is assumed to be isothermal. The temperature is
denoted by T. The free energy of the system when _c ¼ 0 is repre-
sented by [20]

GðtÞ ¼
Z e

2
rqð~r; tÞj j2 þ g½qð~r; tÞ; T�

n o
dr ð1Þ

where e is the gradient parameter. It has been derived from thermo-
dynamic and mathematic approximations that e can be expressed

as e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@2g½q; T�=@ðrqÞ2 � 2@ð@g½q; T�=@r2qÞ=@q

q
[21]. It is obvi-

ously that e is dependent of temperature T. g½qð~r; tÞ; T� is the free
energy density at position r and time t of the bulk phase which
takes following expression for van der Waals fluid [22]

g½qð~r; tÞ; T� ¼ qð~r; tÞRT ln
qð~r; tÞ

1� qð~r; tÞb

� �
� aqð~r; tÞ2 ð2Þ

where a and b are factors to represent the attraction between mole-
cules and repulsion due to volume respectively. Phase separation
follows the routine of dGðtÞ=dt 6 0 until the equilibrium. Eq. (2)
can be used to calculate equilibrium phase diagram directly using
the free energy minimization method. However, it cannot be used
to calculate the steady state phase diagram when _c–0 because no
shear effect is included in Eq. (2). The equation of state of van der
Walls fluid at _c–0 can be derived from [18]

p ¼ q
@g½q; T�
@q

� g½q; T� ð3Þ

where p is the pressure which takes the format of

p ¼ q
RT

1� qb
� aq2 ð4Þ

The equation of state is used to determine the mesoscopic inter-
particle potentials. The interaction potential between point~r and~r0

is defined as [17]

Vð~r;~r0Þ ¼ }wð~r;~r0Þwð~rÞwð~r0Þ ð5Þ

where } is a signal function. wð~r;~r0Þ is the weight factor that
depends on the relative position between r and r0. wð~rÞ is derived
based on the unification of equations of state and has [4]

}wðrÞ2 ¼ 2bqðrÞ2

1� qðrÞb�
2aqðrÞ2

RT
ð6Þ

where } = �1 when the right hand side of Eq. (6) is negative, or
} = 1 vice versa.

In LB simulation of microstructure evolution, time flows is repre-
sented by the iteration of a series discrete time steps. Each time step
contains three processes. The first is called propagation where par-
ticles migrate to their neighbor sites without falling in between. The
second is called collision where each particle distribution function
relaxes toward the equilibrium. The LB Bhatnagar–Gross–Krook
(BGK) approximation defines a collision operator as following

f ið~r þ êiDt; t þ DtÞ � f ið~r; tÞ ¼ �
1
s
½ f ið~r; tÞ � f eq

i ð~r; tÞ� ð7Þ

where fi is the instant particle distribution functions. ~ei is the ele-
mentary speed vector as illustrated in Fig. 1. Dt is the time step. s
is the relaxation time which is related to kinetic viscosity of the
fluid g by g ¼ ðsDt � 0:5Þ=3. f eq

i is called the equilibrium particle
distribution function or equilibria. For the two dimensional nine
velocity (i = 0, 1, . . . 8) LB model (named D2Q9), f eq

i takes format
of following for compressible fluids [16]

f eq
i ¼ qwi½1þ 3ðêi �~uÞ þ 4:5ðêi �~uÞ

2 � 1:5~u2� ð8Þ

where the mass density is obtained from qð~r; tÞ ¼
P8

i¼0f eq
i ð~r; tÞ. wi is

the weight factor and has w0 ¼ 4=9, wi = 1/9 for i = 1, 2, 3, 4 and
wi = 1/36 for i = 5, 6, 7, 8. wi in Eq. (8) and wð~r;~r0Þ in Eq. (5) are
the same. ~uð~r; tÞ is the speed of lattice and its value is calculated

via ~uð~r; tÞ ¼
P8

i¼0 f eq
i ð~r; tÞêi=qð~r; tÞ. The expression of f eq

i for incom-
pressible liquid is different from Eq. (8) [23]. Multiplying Eq. (8)
by 1 and summing over sub index i will lead to continuum equation,
and multiply Eq. (8) by ~ei and summing over sub index i leads to
Navier–Stokes equation. The third process is called acceleration
where the lattice speed ~uð~r; tÞ is changed into ~u0ð~r; tÞ according to
momentum conservation.

~u0ð~r; tÞ �~uð~r; tÞ½ �qð~r; tÞ ¼ �sr
X
r0–r

Vðr; r0Þ
" #

ð9Þ
Fig. 1. Schematic diagram of shear boundaries and elementary speed vectors of
D2Q9 lattice Boltzmann model.
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