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a b s t r a c t

Gravity-driven displacement of a droplet on a grooved surface is studied using the Shan and Chen’s pseu-
dopotential multiphase lattice Boltzmann (LB) model allowing a high density ratio between the gas and
liquid phases. To verify and validate the multiphase LB model, we find good agreement of the LB simu-
lations with the pressure difference over a droplet described by Laplace’s law, as well as with the dynamic
capillary intrusion process obtained by Washburn’s law. The equilibrium contact angle of a droplet on a
smooth horizontal surface is studied as a function of the wettability, finding good agreement with an
empirical scheme obtained with Young’s equation. The dynamic behavior of a droplet moving down a
vertical surface under different gravitational forces is studied. On a vertical wall, the liquid droplet
reaches a terminal velocity, which value depends on the wettability of the surface and strength of the
gravitational force. When a hydrophilic groove is introduced along the surface, the droplet shows a com-
plex behavior and, depending on the height of the groove, different patterns and mechanisms of the liq-
uid filling the groove are observed. For small groove heights, the droplet totally fills in the groove. At
certain groove height, a liquid bridge is formed between top and bottom surfaces dragging most liquid
onto the bottom surface. At increasing height, this liquid bridge is broken, and liquid can be dragged into
the groove by adhesion force. At high groove heights, the droplet breaks up in smaller droplets dripping
from the top surface onto the bottom surface, and only a small amount of liquid remains in the groove.
When the wettability of the groove or surface is changed, the liquid filling behavior changes notably. For a
hydrophobic surface, but hydrophilic groove, the groove is filled partly by the liquid, while, for the oppo-
site condition, a hydrophobic groove in a hydrophilic wall, the droplet runs into the groove, but the liquid
is again dragged out and no filling of the groove occurs.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The study of the displacement of a droplet on a surface, such as
the deposit and runoff of a droplet on surfaces of different rough-
ness or in the presence of grooves, is of common interest.
Applications are found in inkjet printing, coating, etc. Such multi-
phase phenomena can be studied solving the Navier–Stokes equa-
tions using computational fluid dynamics (CFD), combined with
front tracking or front capturing methods, among which the

Volume of Fluid (VOF) [1] and the level set method [2] are widely
adopted. These front tracking or front capturing methods are based
on an additional calculation step to track the phase interface. It is
known that VOF may introduce some numerical diffusion and
requires more complex algorithms, making it less convenient for
three-dimensional problems [1]. The level set method is simpler
to apply and can handle sharp interfaces in three-dimensional
cases. However, level set method may show mass conservation
problems near interfaces [2]. When these methods are applied on
complex geometries or small scale problems, these limitations
can become particularly significant.

The lattice Boltzmann method (LBM), which is based on micro-
scopic models and mesoscopic equations, is considered an attrac-
tive numerical alternative for solving multiphase phenomena
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[3,4]. The kinetic nature of the LBM allows representing the micro-
scopic interactions between different fluids, thereby facilitating the
automatic tracking of the fluid interfaces in a multiphase system
[5,6]. Also fluid–solid interactions can be implemented conve-
niently in the LBM without introducing additional complex kernels
[7]. Owing to its constitutive versatility, the LBM has developed
into a powerful technique for simulating transport processes, and
is particularly successful in modelling transport processes involv-
ing interfacial dynamics and complex geometries, such as multi-
phase flow in porous media [3,4,8]. Several LB models have been
developed for multiphase flow simulation including the
color-gradient based LB method by Gunstensen et al. [9], the
free-energy model by Swift et al. [10], the mean-field model by
He et al.[11] and the pseudopotential model by Shan and Chen
[5,6]. Among them, the pseudopotential model, to the best of the
authors’ knowledge, is the most widely used LB multiphase model
due to its simplicity and versatility. This model represents micro-
scopic molecular interactions at mesoscopic scale using a pseu-
dopotential (also often called effective mass) depending on the
local density [5,6]. With such interactions, a single component
fluid spontaneously segregates into a high and low density phases
(e.g. liquid and gas), when the interaction strength (or the temper-
ature) is under the critical point [5,6]. The automatic phase separa-
tion is an attractive characteristic of the pseudopotential model, as
the phase interface is no longer a mathematical boundary and no
explicit interface tracking or interface capturing technique is
needed. The location of the phase interface is characterized
through monitoring of the jump of the fluid density from gas to liq-
uid. The pseudopotential model captures the essential elements of
fluid behavior, namely it follows a non-ideal equation of state
(EOS) and incorporates a surface tension force. Due to its remark-
able computational efficiency and clear representation of the
underlying microscopic physics, this model has been used as an
efficient technique for simulating and investigating multiphase
flow problems, particularly for these flows with complex topolog-
ical changes of the interface, such as deformation, coalescence and
breakup of the fluid phase, or fluid flow in complex geometries
[12]. Recently, Chen et al. [8] thoroughly reviewed the theory
and application of the pseudopotential model, and we refer to their
paper for more details.

The pseudopotential model has been used to simulate droplet
displacement on surfaces. Kang et al. [13] investigated a
two-dimensional droplet flowing down a channel with different
Bond numbers. The Bond number is the dimensionless number
representing the ratio between gravitational force and surface ten-
sion. The effects of surface wettability, droplet size and density,
and viscosity ratio were studied. Mazloomi and Moosavi [14]
simulated the runoff of a gravity-driven liquid film over a vertical
surface displaying U- and V-shaped grooves or mounds. Their
results showed that each groove and mound has a critical width
for successful coating or covering with fluid. If the width of a
groove is larger than a critical width, the grooves and surface are
fully coated. This critical width depends on the capillary number,
contact angle and groove width and height. On surfaces with sev-
eral grooves of the same geometry, there exists a critical distance
between grooves for full coating of the groove. The study provided
a relationship between critical distance, contact angle and capillary
number. However, their explanation of the interactive force bal-
ance to control liquid displacement on a vertical surface was found
to be insufficient. Azwadi and Witrib [15] investigated the dynamic
behavior of droplets with respect to contact angle, Bond number
and tilting of the surface. Li et al. [16] studied the deformation
and breakup of a droplet in a channel with a solid obstacle. They
investigated droplet breakup and deformation considering differ-
ent obstacle shapes, wettability, viscous ratio and Bond number.
In all works, the displacement of an immiscible fluid with a low

density ratio between liquid and gas, usually equal to 1, is investi-
gated. We finally mention the work of Huang et al. [17] who stud-
ied, for high density ratio, the droplet motion inside a grooved
channel considering different surface wettability, surface tension,
tilt angles and geometries. However this multiphase LB model is
different to the approach presented in this paper.

The present study considers a single component multiphase
problem with high density ratio between liquid and gas. The dis-
placement of a two-dimensional droplet, flowing down a grooved
surface due to gravitational force, is investigated using the Shan
and Chen’s pseudopotential LB model. In most LB models, it is dif-
ficult to achieve a high density ratio between the two phases.
Increasing the density ratio results commonly in large spurious
currents and makes the simulation unstable. Therefore, most LB
modelling focused on multiphase problems with a density ratio
of less than 10. In this paper, the Carnahan–Starling (C–S) equation
of state (EOS) [18] is combined with a force scheme based on the
exact-different method (EDM) [19] for a high density ratio problem
guaranteeing low spurious currents and numerical stability. The
influence of different groove geometry, wettability and tilt angles
of the surface is investigated in detail.

The paper is organized as follows: in Section 2, we describe the
pseudopotential multiphase LB model with the C–S EOS; in
Section 3, validation cases are presented; the computational
set-up of the gravity-driven droplet on a grooved surface and
results are presented in Section 4; and finally in Section 5, conclu-
sions are drawn.

2. Numerical method

The LBM considers flow as a collective behavior of pseudoparti-
cles residing on a mesoscopic level, and solves the Boltzmann
equation using a small number of velocities adapted to a regular
grid in space. The LBM has been successfully applied to a wide
range of complex transport problems, such as porous flow [7], mul-
tiphase flow [13], particle flow [20] and reactive transport pro-
cesses [21–23]. In the LB equation, fluid motion is represented by
a set of particle distribution functions. The evolution equation,
which is based on the Bhatnagar–Gross–Krook (BGK) collision
operator, is written as

f aðxþ ceaDt; t þ DtÞ � f aðx; tÞ ¼ �
1
s
½f aðx; tÞ � f eq

a ðx; tÞ� ð1Þ

where fa(x, t) is the density distribution function and fa
eq(x, t) is the

equilibrium distribution function. x denotes the position, t is the
time and a is the lattice direction. A relaxation time s is introduced,
which relates to the kinematic viscosity as v = cs

2(s � 0.5)4t. The
lattice sound speed cs is equal to c/
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, where c the lattice speed
is equal to 4x/4t, with the grid spacing 4x and the time step 4t.
In the LBM, both the grid spacing and time step are set equal to 1.
For the D2Q9 lattice model with nine velocity directions at a given
point in two-dimensional space, the discrete velocity ea is given by

ea ¼

ð0;0Þ; a ¼ 0;

cos ða�1Þp
2

h i
; sin ða�1Þp

2

h i� �
; a ¼ 1;2;3;4;ffiffiffi

2
p

cos ða�5Þp
2 þ p

4

h i
; sin ða�5Þp

2 þ p
4

h i� �
; a ¼ 5;6;7;8:

8>>><
>>>:

ð2Þ

The equilibrium distribution function for the D2Q9 lattice model is
of the form

f eq
a ¼ waq 1þ 3

c2 ea � uð Þ þ 9
2c4 ea � uð Þ2 � 3

2c2 u2
� �

ð3Þ

where the weighting factors wa are given by

wa ¼
4=9; a ¼ 0;

1=9; a ¼ 1;2;3;4;

1=36; a ¼ 5;6;7;8:
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