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a b s t r a c t

A data transfer strategy applicable to overset grid configurations has been developed that improves inter-
polation and extrapolation accuracy and eliminates orphan points. Traditional trilinear mappings based
on interpolation stencils are replaced with a ‘‘cloud’’-based algorithm which retains no dependence on
grid connectivity. A variable number of donor points was sourced from a single grid in the vicinity of a
receptor point, permitting consistent treatment of orphan points in the data transfer method. This
cloud-based interpolation methodology demonstrates the ability to preserve flow-field features for con-
figurations both with and without adequate mesh overlap. The approach eliminates problems associated
with orphan points and reduces transient conservation errors by an order of magnitude.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Within the fluid mechanics community, many applications of
interest involve predicting the unsteady behavior of configurations
moving in multiple frames of reference. To facilitate the engineer-
ing analysis, an efficient means of handling the evolution of com-
putational domains due to mesh motion, deformation, and/or
grid adaptation is necessary. The state of the art in computational
fluid dynamics (CFD) is to use an overset or Chimera approach [1,2],
which applies overlapping grids for the time-accurate solution of
unsteady problems and the modeling of complex geometries.
This modular approach utilizes multiple body-fitted grids to model
each moving component, in addition to one or more stationary
background grids that model the remainder of the flow field.
Overset grid systems permit interior grid boundaries to be placed
arbitrarily so that different components may move freely relative
to each other. The scheme has since been applied to both struc-
tured and unstructured grids for many engineering problems of
interest [3–6].

1.1. The overset method

An overset scheme requires that flow-field data be exchanged
between pairs of overlapping meshes at each solver iteration to
enable a solution on each component grid that is globally consis-
tent. Points on non-solid interior boundaries requiring data
exchange are known as fringe points. Additional effort is needed
to obtain a solution because of the potentially complex domain

interconnectivity between multiple overlapped grids. Moreover,
since fringe points from neighboring grids are in general
non-coincident, data transfer requires interpolation at each time
step. Hole-cutting to remove points interior to solid boundaries,
search operations to identify donor/receptor pairs, and calculation
of interpolation weights are typically performed by additional soft-
ware, such as PEGASUS 5 [7], PUNDIT [8], or Suggar++ [9]. The data
transfer entails calculating a new solution at target locations
known as receptors based on the solution from source points
known as donors. On a Cartesian or structured mesh, the most effi-
cient approach is to directly apply trilinear interpolation [10]. The
PEGASUS 5 grid preprocessor [7] employs this technique. A more
general approach relies on isoparametric mappings with trilinear
basis functions, applicable to both structured and unstructured
grids. PUNDIT [8] and Suggar++ [11] both apply this technique.

Complications arise when acceptable donor points for interpo-
lation cannot be found, giving rise to ‘‘orphan’’ points. This situa-
tion occurs if adjacent grids have insufficient overlap or if
significant disparities in mesh spacing between grid levels exist.
A point is considered to be an orphan when one or more of its
donors is also a fringe point requiring an interpolated solution.
An important consideration is that achieving higher-order spatial
accuracy requires larger stencils. For example, an implicit
sixth-order or explicit fourth-order scheme can require a
five-point stencil which necessitates two levels of fringe points
to maintain consistency with the interior of the computational
domain [12,13]. When orphan points are present, solution fidelity
may be lost because two levels of fringes cannot be resolved.
Similarly, interpolation accuracy generally increases with overlap
size because more points are available from which to perform
the data transfer. The problem of orphan points is exacerbated
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by relative mesh motion which can increase the number of
orphans and/or change their locations over time.

Solutions at orphan locations are typically estimated by an
averaging procedure [14,15,6]. Two general mitigation approaches
exist when orphan points are present. First, the grids may be rede-
signed to improve the quality of mesh intersections. In a recent
application of an unstructured near-body methodology coupled
to a Cartesian off-body solver, Abras and Hariharan [16] had to
manually adjust the trim distance dictating the amount of overlap
between near-body and off-body meshes. However, manual
adjustments are not always possible, especially when considering
complex geometries, and grid refinement can significantly increase
cost. For example, a wing-store configuration studied by Power
et al. [6] had 0.5% of all cells orphaned. Application of an adaptive
mesh refinement procedure was able to eliminate all orphans but
increased the total cell count by 10%. Even if increased mesh sizes
are acceptable, it may be difficult to guarantee that meshes in rel-
ative motion will be orphan-free for all time steps throughout the
simulation. As an alternative, a dense interface grid may be added
in the orphan region [17,6]. These approaches require user inter-
vention and added cost, either in engineering hours or computa-
tional time.

1.2. Scattered data interpolation

Scattered or cloud-based data techniques can provide a
continuous mapping between arbitrarily structured data
samples and remain decoupled from solver type (e.g., unsteady
Reynolds-averaged Navier–Stokes, vorticity-velocity, or potential
flow methodologies) and topology (Cartesian, structured, and
unstructured). More broadly described as kernel function interpo-
lation, an interpolant is formed by a linear combination of nonlin-
ear basis functions (kernels) to represent nonlinear functions. The
approach is well established within other fields (e.g., computer
graphics, digital elevation modeling, or optical design) but their
application to CFD problems has been limited. This data transfer
methodology has the potential to reduce or eliminate orphan
points while increasing interpolation accuracy. Since donor points
can be sourced from any location on any grid, the approach natu-
rally precludes scenarios involving a lack of sufficient donor points.

When constructing an interpolant (s) to an unknown function
(f) sampled from a set of scattered data points (X), a solution is
readily obtained when interpolation conditions

sðxjÞ ¼ f j; xj 2 X; ð1Þ

are independent of rigid (Euclidean) transformation [18]. This is
automatically the case when applying basis functions that depend
only Euclidean distance (r ¼ jjxjj2) [18], i.e., radial basis functions
(RBFs). The quality of the results is then sensitive to the location
of kernel centers [19]. In the case of the centers coinciding with
the locations at which the solution is known, an interpolant exists

per the Mairhuber-Curtis theorem [20]. An additional consideration
is that RBFs are by definition isotropic because the function has the
same evaluation in all directions. However, fluid dynamics data are
often discontinuous in nature. Therefore an alternative approach is
to use not radial but elliptical bases to introduce data adaptivity
into the data transfer algorithm. The development of anisotropic
basis functions based on local solution gradients is described in
Ref. [21]. Rather than developing new basis functions, the present
work focuses on applying established RBFs to the problem of over-
set data transfer.

Recommendations from a number of authors [22,23,20] have
suggested that scattered data interpolation with RBFs is a general,
accurate approach to transferring arbitrarily distributed data.
These methods are especially attractive for overset data transfer
because:

1. They permit interpolation and extrapolation [24] based on arbi-
trarily clustered clouds of points in any dimensional space.

2. They have in general higher-order accuracy that can be
increased by freely adding data points.

3. They are directly applicable to unstructured methodologies
since the interpolant is decoupled from the computational
mesh, eliminating requirements on the spatial structure of the
sampled data.

4. They can be readily applied to the problem of solution transfer
in overset methods since they do not require connectivity
information.

For these reasons, an RBF approach is ideally suited for data
transfer with orphan points since there are no overlap or connec-
tivity requirements on the donor points. Therefore the same data
transfer approach may be applied regardless of grid configuration.

An RBF is a univariate function of Euclidean distance from a
chosen center xc. Therefore the RBF (/) is related to its kernel func-
tion (U) as follows:

Uðx;xcÞ ¼ /ðjj x� xc j j2Þ ¼ /ðrÞ: ð2Þ

An RBF interpolant based on the set of data samples X has the fol-
lowing form:

sf ;XðxÞ ¼
XN

j¼1

ajUðx; xjÞ þ
XQ

k¼1

bkpkðxÞ; ð3Þ

where s is the RBF interpolant of the function f evaluated at an arbi-
trary location x; aj and bj are the interpolation coefficients to be
determined; and xj are the RBF centers that coincide with the data
sampling locations. Typically, pk is chosen to be a polynomial basis.
An additional constraint is placed on the function pk to ensure solv-
ability of the interpolation system [20]:

XN

j¼1

ajpkðxjÞ ¼ 0: ð4Þ

Nomenclature

a radial basis interpolation coefficient
b polynomial interpolation coefficient
Ds isotropic grid spacing
Dt simulation time step size
U radial basis kernel, Uð~x;~xiÞ ¼ /ðk~x�~xik2Þ
/ radial basis function (RBF), /ðrÞ
h hangar height
M Mach number
N number of interpolation source points

n normalized frequency, fxr=U1
Q number of polynomial coefficients
r radial (Euclidean) distance, jj~x jj
s interpolant to an unknown function
V1 free-stream velocity
X set of source data points
xr reattachment point
xs separation point

E.W. Quon, M.J. Smith / Computers & Fluids 117 (2015) 88–102 89



Download English Version:

https://daneshyari.com/en/article/761647

Download Persian Version:

https://daneshyari.com/article/761647

Daneshyari.com

https://daneshyari.com/en/article/761647
https://daneshyari.com/article/761647
https://daneshyari.com

