Computers & Fluids 117 (2015) 114-124

Contents lists available at ScienceDirect

Computers & Fluids

journal homepage: www.elsevier.com/locate/compfluid

Two-level parallelization of a fluid mechanics algorithm exploiting
hardware heterogeneity

@ CrossMark

Immo Huismann *, Jorg Stiller, Jochen Frohlich

Lehrstuhl fiir Stromungsmechanik, Technische Universitdit Dresden, 01062 Dresden, Germany

ARTICLE INFO ABSTRACT

Article history:

Received 20 December 2014

Received in revised form 20 April 2015
Accepted 14 May 2015

Available online 22 May 2015

The prospect of wildly heterogeneous computer systems has led to a renewed discussion of programming
approaches in high-performance computing, of which computational fluid dynamics is a major field. The
challenge consists in harvesting the performance of all available hardware components while retaining
good programmability. In particular the use of graphic cards is an important trend. This is addressed
in the present paper by devising a hybrid programming model to create a heterogeneous data-parallel
computation with a single source code. The concept is demonstrated for a one-dimensional
. spectral-element discretization of a fluid dynamics problem. To exploit the additional hardware available
Parallelization
Heterogeneous computing when coupling GPGPU-acceleratec.l processes with excess CPU cores, a straight-forward load balanqng
MPI model for such heterogeneous environments is developed. The paper presents a large number of run time

Keywords:

GPGPU measurements and demonstrates that the achieved performance gains are close to optimal. This provides
OpenMP valuable information for the implementation of fluid dynamics codes on modern heterogeneous
OpenACC hardware.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The use of high-performance computing (HPC) is a widely
employed approach in science and engineering, of which computa-
tional fluid dynamics (CFD) is a major field. Current supercomput-
ers incorporate a multitude of nodes, each comprising multiple
CPUs, connected with each other to enable large-scale simulations.
Yet, the structure of this type of hardware has grown increasingly
more complex in recent years. The incorporation of multi-core
components generated a new layer in the hierarchy of the system,
while accelerator hardware is presently leading to an even more
heterogeneous landscape. The two fastest supercomputers ranked
on the TOP500 list [24], for example, incorporate accelerators,
either Xeon Phi or general purpose GPUs (GPGPUs). As the hard-
ware becomes more heterogeneous, the software needs to adapt
in turn to attain optimal performance.

Traditionally, distributed-memory single-core systems were
programmed using a message-passing approach, typically realized
with the Message Passing Interface (MPI) [12]. The in-house finite
volume code of one of the authors is a typical example [13]. With
more cores per CPU, the message-passing approach leads to a
higher amount of communication, since the computational domain
is decomposed into more parts which need to exchange

* Corresponding author.
E-mail addresses: Immo.Huismann@tu-dresden.de (I. Huismann), Joerg.Stiller@
tu-dresden.de (J. Stiller), Jochen.Froehlich@tu-dresden.de (J. Froéhlich).

http://dx.doi.org/10.1016/j.compfluid.2015.05.012
0045-7930/© 2015 Elsevier Ltd. All rights reserved.

information. A common approach is hybrid parallelization utilizing
OpenMP 5] inside a multi-core component and MPI to communi-
cate between those, as discussed in [18]. Accelerated systems are
programmed in a similar fashion, though with specialized pro-
gramming languages that only exploit the accelerators, whereas
the steering CPU processes maintain communication via MPI, e.g.
[14].

Traditionally, data-parallel CFD codes are conceived either for
CPUs or for GPGPUs, mainly due to different programming
approaches being used. Nowadays some programming models
and libraries allow to compile for different kinds of hardware,
resulting in a code capable of running on clusters of either hard-
ware type [4,25,10]. Yet, with the hardware environments growing
more and more diverse, having to run programs simultaneously on
different kinds of hardware often becomes inevitable [11].

The topic has therefore entered the agenda of researchers in
computer science as well as researchers in the application field.
In particular the latter strive to employ their intimate knowledge
about physical and algorithmic properties to optimize computa-
tional performance, so as to run more and larger simulations at
the same computational cost. On the other hand, this approach
has its limits as it impacts on the versatility, so that more general
software concepts are required. Several different approaches exist
and it is difficult - as experienced by the authors - to assess the
potential of each in order to decide about future algorithmic
developments.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2015.05.012&domain=pdf
http://dx.doi.org/10.1016/j.compfluid.2015.05.012
mailto:Immo.Huismann@tu-dresden.de
mailto:Joerg.Stiller@ tu-dresden.de
mailto:Joerg.Stiller@ tu-dresden.de
mailto:Jochen.Froehlich@tu-dresden.de
http://dx.doi.org/10.1016/j.compfluid.2015.05.012
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid

I. Huismann et al./ Computers & Fluids 117 (2015) 114-124 115

Homogeneous CPU clusters are nowadays well understood, as
are heterogeneous CPU clusters [29]. While GPGPU-computing
added a new layer of complexity and complications to HPC, even
complex algorithms are now running on clusters of such hardware,
sometimes enabling tremendous speedups over the traditional
CPU clusters while using similar programming techniques
[22,21]. But fully heterogeneous systems require the orchestration
of multiple compute units and the best way to optimal perfor-
mance is yet hidden.

Some task-based frameworks allow programming such systems
[3] and researchers from the application field already combined
OpenMP and CUDA to establish a collaboration of CPU and
GPGPU, either in small-scale tests [9], or in large-scale simulations
[30]. In the latter reference a speedup of about two is gained by uti-
lizing the CPU in addition to the GPGPU while maintaining compu-
tational efficiency at 89%. Yet the reported implementation costs
are substantial, as the computational parts of the code are effec-
tively doubled, with one implementation for the GPGPU, one for
the CPU and an additional steering logic. In [30] load balancing
was established by fixing the ratio of CPU and GPGPU computation
for all problem sizes. An iterative load balancing scheme, as
employed in [9], can also be advantageous. In both studies the per-
formance gain which can be achieved remains unclear and the
implementation costs for the GPGPU enhancements are felt as a
drawback.

The present paper seeks to provide improvements for
load-balancing as well as for ease of implementation. While
[30,9] utilized OpenMP in combination with CUDA to exploit the
compute capabilities on one node, we aim to create a
single-source implementation by combining MPI with the
pragma-based language extensions OpenMP and OpenACC, com-
piling for each kind of hardware at a time and using a
message-passing layer rather than a shared-memory layer. This
approach is illustrated using a minimal solver featuring the essen-
tial components of a CFD code. The parabolic system being solved
contains a nonlinear right-hand side and can be seen as a represen-
tative of a typical CFD subproblem obtained when solving a trans-
port equation with the convection term discretized explicitly in
time. Often, a linear elliptic system has to be solved, e.g., when dis-
cretizing friction terms implicitly or solving a Poisson equation for
the pressure, both used in [20], for example. Since the explicit time
stepping shares some similarity with an iterative scheme, load bal-
ancing information on such an explicit scheme can provide hints in
this direction as well, thus avoiding further algorithmic parame-
ters. The basic discretization scheme is a spectral-element method
(SEM), which bears substantial perspectives for usage with CFD as
already demonstrated in [26]. Most important for heterogeneous
hardware is that this approach contains parameters to change
granularity by switching from low to high approximation order [6].

The hardware considered in this paper is one socket comprising
one CPU and one GPGPU, a typical building block of a supercom-
puter. In the present case study the goal is to maximize the perfor-
mance of this building-block and thus exploit the heterogeneity of
this system. First, the performance in the homogeneous cases of
CPU and GPGPU is studied in order to gain reference data for load
balancing in the heterogeneous case. In the main part of the paper,
the performance of the heterogeneous case and the quality of the
load balancing are addressed. These data, as a case study, provide
quantitative information relevant for devising parallelization
strategies for larger application problems in fluid mechanics.

2. Model problem

The test case considered represents the combustion of a pre-
mixed gas in one dimension [27]. For suitably chosen parameters

and initial conditions the problem is governed by the reaction-dif-
fusion equation

0T = 0uT +q(T) (M)
2 —
an) = - mexn (02 15),)

where T(t,x) is the temperature, t the time and x the location, while
B is the ZebovicH number determining the stiffness of the problem,
and o the activation energy of the reaction. In this formulation the
temperature is normalized to the non-dimensional interval [0, 1],
where zero implies the unburned and one the fully burned state.
Further information on physical issues and a derivation of the equa-
tion can be obtained in [28].

Eq. (1) is solved on the domain 2 = (0, Xenq] in the time interval
(0, tena] with the DiricHier boundary condition T(t,0) = 1 at the left
boundary and the Neumann boundary condition 9xT(t,Xena) = 0 at
the right boundary. The initial condition is a stable reaction front
at x = x¢ for B — oo, for which an analytic solution exists:

1
T0,%) = { exp (X — X)

These conditions result in a reaction front traveling from left to
right, as depicted in Fig. 1, with a speed very close to unity due to
the normalization employed [27].

This test case can be readily extended towards more dimen-
sions, multiple species, and can as well be coupled with a flow
field. As discussed in the previous sections, it represents the most
important elements of a typical CFD algorithms.

for x < x¢
for x > Xx;.

3)

3. Discretization method

Eq. (1) is discretized in time with an explicit
backward-differencing scheme of second order [17], while for the
spatial discretization a spectral element method (SEM) is
employed which is described in [8]. With the spectral-element for-
mulation the domain is decomposed into 1. elements, as depicted
in Fig. 2. On each of these elements the temperature is approxi-
mated using Lagrange polynomials of order p, so that p + 1 degrees
of freedom are present in each element. For this set of basis func-
tions, the coefficients of a variable, e.g. the temperature T, in one
element Q. at time t" are denoted as

T = (Toe Tie The)', (4)

where the nomenclature shown in Fig. 2 is used. The matrix com-
prising all coefficients will be referred to as

Tor - Ton
n qu T?’ne n n n
= | =@ T2 T3, ()
T T
: 1.0 T T T t OO]
- gal — t=00 ||
El_) 0.8 — t=5.0
= 0.6 — t=10.0 [
S 04r — t=150 |1
Q 0.2 — t=200
S ool
F oo 5 10 15 20 25 30
x [-]

Fig. 1. Temperature distribution at several instants in time of a simulation of a
reaction front according to (1)-(3) initialized with parameters x; = 2, = 0.8 and
B =10.

Download English Version:

https://daneshyari.com/en/article/761649

Download Persian Version:

https://daneshyari.com/article/761649

Daneshyari.com

https://daneshyari.com/en/article/761649
https://daneshyari.com/article/761649
https://daneshyari.com

