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A discontinuous Galerkin scheme for unsteady fluid flows is described that allows a very high level of
adaptive control in the space-time domain. The scheme is based on an explicit space-time predictor,
which operates locally and takes the time evolution of the data within the grid cell into account. The pre-
dictor establishes a local space-time approximate solution in a whole space-time grid cell. This enables a
time-consistent local time-stepping, by which the approximate solution is advanced in time in every grid
cell with its own time step, only restricted by the local explicit stability condition. The coupling of the
grid cells is solely accomplished by the corrector which is determined by the numerical fluxes. The con-
sidered discontinuous Galerkin scheme allows non-conforming meshes, together with p-adaptivity in 3
dimensions and h/p-adaptivity in 2 dimensions. Hence, we combine in this scheme all the flexibility that
the discontinuous Galerkin approach provides. In this work, we investigate the combination of the local
time-stepping with h- and p-adaptivity. Complex unsteady flow problems are presented to demonstrate
the advantages of such an adaptive framework for simulations with strongly varying resolution require-
ments, e.g. shock waves, boundary layers or turbulence.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

An important advantage of the discontinuous Galerkin (DG)
approach consists of its high flexibility with respect to the spatial
approximation: The approximation of the solution is represented
by a piecewise polynomial and the degree of the local polynomials
determine the order of accuracy in space. Hence, increasing the
order can be achieved through a simple enrichment of the local
basis. This can also be handled locally in regions where we aim a
higher resolution. Geometrical flexibility is also an important fea-
ture of the DG method since it can be formulated on general
unstructured grids with non-conforming meshes to handle com-
plex geometries. The DG method is thus an ideal candidate, for
which general adaptive strategies as local grid refinement
(h-refinement) or local choice of the order of accuracy (p-adaptiv-
ity) can be applied, see, e.g., [25]. Due to this distinguished versa-
tile flexibility the DG method is particularly suited for multi-scale
problems which require small regions of high resolution while
other parts can be discretized uniformly.

Adaptive concepts for discontinuous Galerkin schemes have
been successfully applied, e.g., by Burgess and Mavriplis [7],
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Kopera and Giraldo [26] or Hartmann and Houston [22,23]. All
these approaches based on DG schemes with implicit or
semi-implicit time integration. As we are particularly interested
in unsteady flow problems, the adaptivity of the time approxima-
tion is an additional issue and is a focal point in this paper.
Especially for wave dominated problems like acoustics and propa-
gating shock waves, the time accuracy has to be preserved. Regions
with local refinement and unsteady phenomena need small time
steps. Allowing large time steps for a transient problem would lead
to numerical diffusion and to loss of information. For an explicit
scheme, a global time-stepping approach can cause inefficiency,
since the smallest time step forced by small sized grid cells domi-
nates the whole simulation. To overcome this inefficiency, we
employ an explicit time approximation with local time-stepping,
which allows each grid cell to take the maximum locally stable
time step. The local time-stepping enables a powerful adaptation
framework, which also takes the coupling of spatial and temporal
scales into account since any local h-refinement or p-enrichment
in space inherently implies an adaptation of the time step as well.
Together with the explicit local time-stepping approach, the artifi-
cial viscosity based shock capturing introduced by Persson and
Peraire for an implicit DG scheme [35] now also becomes an attrac-
tive method to robustly resolve shock waves.

In the following we describe an explicit discontinuous Galerkin
scheme that incorporates the following properties:
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e high order accurate spatial approximations on general

unstructured grids with triangles, quadrilaterals, tetrahedra,

hexahedra, pyramids, prisms,

arbitrary high order in space and time,

non-conforming meshes in 2 and 3 dimensions,

fully conservative,

shock capturing with artificial viscosity,

local time-stepping with the time step from the local stabil-

ity constraint,

e h/p-adaptivity in 2 dimensions and p-adaptivity in 3
dimensions.

Different building blocks of our DG approach have been con-
structed and already been published in a series of papers
[30,15,16,19]. The scope of this work is the investigation of the
combination and interaction of explicit local time-stepping, artifi-
cial viscosity based shock capturing and h/p-adaptivity. To demon-
strate the high potential of the adaptivity framework, simulation
results of various complex unsteady flow problems are presented.

The paper is organized as follows. We first describe the main
components of the space approximation within the semi-discrete
approach in Section 2. The time consistent local time-stepping
method and the determination of the time step are introduced in
Section 3 to obtain the fully discrete formulation. The adaptivity
framework (h- and p-adaptivity) and its implementation with
respect to the local time-stepping scheme is discussed in
Section 4. In Section 4 we also provide a brief overview of the arti-
ficial viscosity based shock capturing as part of the whole adapta-
tion strategy. In Section 5, we focus on the simulation results and
present different applications of the space-time-adaptive frame-
work for two- and three-dimensional complex flows and also
address the parallel performance and dynamic load balancing attri-
butes of the implementation. Conclusions and final remarks are
given in Section 6.

2. An explicit discontinuous Galerkin method in the space-time
domain

2.1. Approximation in space

For simplicity we restrict the derivations to a scalar advection-
diffusion equation, which is formulated in conservation form as

U+ V- fou) =V fiu, Vu). (2.1)

Here, u = u(X,t) denotes the conserved solution variable, f” is the
advection flux and fd the diffusion flux. The diffusion in the flux for-
mulation may be rewritten as

- -

Vi, Vu)y =V - (y(u)@u), (2.2)

where p = p(u) is the non-linear diffusion coefficient.

First, we consider the discretization in space. The spatial
domain €2 is subdivided into non-overlapping spatial grid cells Q;
with surfaces 6Q;. The variational formulation of the advection-
diffusion Eq. (2.1) is obtained by multiplying the equation by a test
function ¢ = ¢(X) and by integration over a grid cell Q;:

/Qi (e + 9 (o) — F(u, u))) pdi = 0. 2.3)

The approximate solution u, = u,(%,t) is defined as a piecewise
polynomial in space and time, represented in the grid cell Q; by

N
wi(X,6) = > () iy (), (2.4)
=1

where ¢;; = ¢;;(X),l =1,..., N are basis functions, which span the
space of polynomials of degree N with support Q; and
t(t),I=1,...,N are the time-dependent degrees of freedom. We
use a set of orthonormal basis functions which are constructed
using the Gram-Schmidt orthogonalization algorithm. The number
of the degrees of freedom is independent of the shape of the grid
cell and given by

d
N= %HW i) 2.5)

with space dimension d and polynomial degree N, see [16] for
details.

The integration by parts with respect to the space variables is
performed yielding the weak form of the DG scheme

/ (ui)[¢d5<’—/f“~§¢d>?+/ uvu; - Ve di
Q Qi Q;

i
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where ii denotes the outward pointing normal vector of the element
faces 0Q; and []” refers to an evaluation at the boundary from the
interior of the grid cell.

As the solution is discontinuous across the grid cell faces,
numerical flux functions g are introduced in the surface integral
and represent the coupling between the grid cells. Here, g¢ denotes
the numerical advection flux. In all our calculations we used a
Godunov-type flux, the Roe flux or the HLLC flux, which are
described in the book of Toro [41] in detail. There are also several
suggestions for a proper diffusion flux proposed in the literature.
The first one for the Navier-Stokes equations was proposed by
Bassi and Rebay [5] and was generalized by Cockburn and Shu
[10], named local discontinuous Galerkin method. Another
approach was studied for elliptic equations, called the interior pen-
alty method and described in a unified formulation in [2]. A
numerical diffusion flux, which is well justified within the finite

volume approach, was proposed in [18,30]. This diffusion flux qu
is computed from the solution of the diffusive Generalized
Riemann Problem (dGRP) and is based on an approximate
Riemann solution for diffusion. This flux has an additional scalar
term g° := pu; — [uuy], involving the jump of the functional values.
It is similar to the symmetric interior penalty scheme and is
adjoint-consistent with optimal order of convergence, see [19]
for details with respect to the Navier-Stokes equations. The bound-
ary conditions are weakly imposed by specifying the correspond-
ing numerical fluxes.

We choose the test functions from the full set of basis functions
and obtain for each grid cell Q; a system of ordinary differential
equations (ODE) in time for the N degrees of freedom:

(@), (1) = Rs (Wi(t), L (1)) + Ry (W(t)). (2.7)

Here, ii;(t) denotes the degrees of freedom written as a vector,
Ry(l;) comprises the volume integrals and Rs(il;, i) represents
the surface integrals, which also depend on neighbor data u;.
Considering the global approximate solution, we get a weakly cou-
pled system of ordinary differential equations for the time depen-
dent degrees of freedom.

2.2. Space-time formulation

To complete the final DG scheme, the semi-discrete formulation
(2.7) has to be integrated in time as well. In principle, any numer-
ical method to solve a system of ordinary differential equations can
be applied. For an explicit time approximation a well-known
approach is the use of a Runge Kutta method, proposed by
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