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a b s t r a c t

In the current work, we present a new finite volume method for numerical simulation of one and two
dimensions of shallow water equations with porosity. The introduction of a porosity into shallow water
equations leads to modified expressions for the fluxes and source terms. The proposed method consists of
two stages, which can be viewed as a predictor–corrector procedure. The first stage (predictor) of the
scheme depends on a local parameter allowing to control diffusion, which modulate by using the limiters
theory. The second stage (corrector) recovers the conservation equation. Numerical results are presented
for shallow water equations with porosity. It is found that the proposed finite volume method offers a
robust and accurate approach for solving shallow water equations with source term and porosity.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The high performance computer helped simulation of compli-
cated urbanized and marine environment problems about proper-
ties and behavior of fluid. The control of properties and behavior of
fluid flow and relative parameters of the inclusive soluble materi-
als are of great advantages offered by numerical simulation of fluid
flow problems. Hence, developing efficient and accurate numerical
algorithms suitable for complex flow domain has become a chal-
lenging task. The interest for flood simulation in urban area has
recently led to research with addition of the porosity in the shallow
water models [19]. In that sense, porosity can be used to represent
the effect that area subject to flooding is only a fraction of the total
surface area [8]. The difficulty of shallow water system of equa-
tions is the preservation of nontrivial equilibrium due to the pres-
ence of source terms. In the last years many authors treated this
question along with an early idea of Roe [17] to upwind the source
terms at the interfaces, see for instance [3,9]. In [16], the authors
proposed a finite volume Roe solver for two-dimensional Euler
equations with porosity, and an HLLC – a modified Riemann solver
for two-dimensional shallow water equations with porosity [10]. A
new AS solver, named PorAS, to solve hyperbolic system of conser-
vation laws with porosity involving source terms, introduced in
[8]. In [25], the authors used finite volume method and Roe-type

approximate Riemann solver to solve one dimensional shallow
water equations with porosity. In [24], the modified Roe-Type
approximate Riemann solver for numerical solution of shallow
water equations with porosity on unstructured grids was used.
The source terms of the bed slope and porosity are both decom-
posed in the characteristic direction so that the numerical scheme
can exactly satisfy the conservative property. In [20], the authors
contrast porosity in the context of storage versus conveyance,
but made no attempt to calculate these parameters individually
based on cell or edge based topographic or building features.
Instead, a spatially uniform and isotropic porosity was used to
model an urban zone, also in [6], the authors compared two differ-
ent numerical discretizations for the two-dimensional shallow
water equations with porosity, both of them are high-order
scheme. The numerical schemes proposed are well-balanced, in
the sense that they preserve naturally the exact hydrostatic solu-
tion without the need of high-order corrections in the source
terms. The aim of the present work is to implement a robust algo-
rithm for solving shallow water equations with porosity in one and
two dimensions. The emphasis is given to a modified Rusanov
method studied and analyzed in [12,13] for the spatial discretiza-
tion. This method is simple easy to implement, accurate and more-
over it avoids the solution of Riemann problems during the time
integration process. The combined method is linearly stable pro-
vided the condition for the canonical Courant–Friedrichs–Lewy
(CFL) is satisfied. The rest of this paper is organized as follows: In
Section 2, we introduce the shallow water equations with porosity
in one-dimension. In Section 3, we present the finite volume
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method for shallow water equations with porosity, Section 3 also
includes the reconstruction of the numerical fluxes in the finite
volume discretization. In Section 4, we introduce the two dimen-
sional shallow water equations with porosity and the construction
of finite volume scheme in two-dimension. In Section 5, we intro-
duce the treatment of the source term. In Section 6, we present
numerical results for shallow water equations with porosity.
Section 8 summarizes the results of this paper with concluding
remarks.

2. One-dimensional shallow water equations with porosity

The shallow water equations with porosity in one dimension
can be written in conservation form as follows:

@W
@t
þ @FðWÞ

@x
¼ Q ðWÞ; ð1Þ

where W is the conserved variable, FðWÞ is the physical flux and
Q ðWÞ is the source term. They are given by
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where h is the water depth, u is the water velocity, / is the porosity,
g is the acceleration due to gravity. S0 and Sf are the source terms
corresponding to the bottom slope and the friction respectively,
defined as

S0 ¼ �gh/
@Z
@x
; Sf ¼ gh/

u2

K2h
4
3
;

where Z is the bottom elevation and K is the Strickler coefficient.
Here, we neglect Sf . The eigenvalues of the Jacobian matrix
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are

k1 ¼ 0; k2 ¼ u� c; k3 ¼ uþ c; ð3Þ

where c ¼
ffiffiffiffiffiffi
gh

p
.

If we write the system (1) as follows

@W
@t
þ AðWÞ @ðWÞ

@x
¼ Q ðWÞ; ð4Þ

it becomes non conservative system, there are many papers focused
on the study of nonconservative hyperbolic system, see for example
[7,15,5]. For the system (1), it is well-known that the non conserva-
tive term induced by the porosity variation 1

2 gh2 @/
@x and source term

�gh/ @Z
@x leads to mathematical and numerical difficulties [21].

In our work, we use the discretization of the source term and
porosity variation term to satisfies the C-property, see Sections 3
and 5.

3. Well-balanced modified Rusanov methods

In order to formulate our finite volume method, we discretize
the spatial domain into control volume Dx ¼ xiþ1=2 � xi�1=2 and we
divide the temporal domain into subintervals ½tn; tnþ1� with uni-
form size Dt. Following the standard finite volume formulation,
we integrate the considered Eq. (1) with respect to time and space

over the domain ½tn; tnþ1� � ½xi�1=2; xiþ1=2� to obtain the following
discrete equation

Wnþ1
i ¼Wn

i �
Dt
Dx

F Wn
iþ1=2

� �
� F Wn

i�1=2

� �� �
þ DtQ n

i ; ð5Þ

where Wn
i is the time–space average of the solution W in the

domain ½xi�1=2; xiþ1=2� at time tn i.e.

Wn
i ¼

1
Dx

Z xiþ1=2

xi�1=2

Wðtn; xÞdx;

and F Wn
i�1=2

� �
is the numerical flux at x ¼ xi�1=2 and time tn. The

spatial discretization of Eq. (5) is complete when a numerical con-

struction of the fluxes F Wn
i�1=2

� �
is chosen and a discretization of

the source term Qn
i is performed. In general, the construction of

the numerical fluxes F Wn
i�1=2

� �
in the finite volume discretization

(5) requires a solution of Riemann problems at the cell interfaces
xi�1=2. Let us assume that the self-similar solution to the Riemann
problem associated with Eq. (1) subject to the initial condition

Wðx;0Þ ¼
WL; if x < 0;
WR; if x > 0;

�
ð6Þ

is given by

Wðt; xÞ ¼ Rs
x
t
;WL;WR

� �
;

where Rs is the Riemann solution which has to be either calculated
exactly or approximated. Thus, the intermediate state Wn

iþ1=2 in (5)
at the cell interface x ¼ xiþ1=2 is defined as

Wn
iþ1=2 ¼ Rs 0;Wn

i ;W
n
iþ1

� �
: ð7Þ

From a computational viewpoint, this procedure is very demanding
and may restricts the application of the method for which Riemann
solutions are difficult to approximate or simply are not available. In
order to avoid these numerical difficulties and reconstruct an
approximation of Wn

iþ1=2, we adapt a modified Rusanov method pro-
posed in [12,4,14] for numerical solution of conservation laws with
source terms. The central idea is to integrate Eq. (1) over a control
domain ½tn; tn þ hn

iþ1=2� � ½x�; xþ� containing the point ðtn; xiþ1=2Þ as
depicted in Fig. 1. Notice that, the integration of Eq. (1) over the

control domain tn; tn þ hn
iþ1=2

h i
� ½x�; xþ� is used only at a predictor

stage to construct the intermediate states Wn
i�1=2 which will be used

in the corrector stage (5). Here, Un
i�1=2 can be viewed as an approx-

imation of the averaged Riemann solution Rs over the control vol-
ume ½x�; xþ� at time tn þ hn

iþ1=2. Thus, the resulting intermediate
state is given byZ xþ

x�
W tn þ hn

iþ1=2; x
� �

dx ¼ Dx�Wn
i þ DxþWn

iþ1 � hn
iþ1=2 F Wn

iþ1

� ��
�F Wn

i

� ��
þ hn

iþ1=2ðDx� � DxþÞQ n
iþ1

2
; ð8Þ

Fig. 1. The control space–time domain in the modified Rusanov method.
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