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a b s t r a c t

This work investigates the performance of the high-order implicit large eddy simulation (HILES) on
curvilinear meshes. The HILES is developed based on a seventh-order hybrid cell-edge and cell-node
dissipative compact scheme (HDCS-E8T7) satisfying the surface conservation law (SCL). Efficiency of
implicit subgrid-scale model is tested by three-dimensional Taylor–Green vortex case. According to
the test of flow over a cylinder, the influence of the SCL errors has been investigated on curvilinear mesh.
Then stall phenomena of thin airfoil NACA64A006 have been simulated by the HILES. The slope of lift
curve, the maximum lift and the stall angle are successfully predicted. Moreover, the lift characteristic
seems to be satisfactorily captured even after the stall angle. The solutions demonstrate the potential
of HILES for simulating complex turbulent flow.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The need for predictive simulation methods for turbulent flows
has led to a significant interest in large-eddy simulations (LES) in
recent years. Without LES that captures unsteady behavior of the
turbulent flows, accurate result may not be obtained [1]. For exam-
ple, it is difficult for Reynolds-averaged Navier–Stokes simulations
(RANS) model to estimate stall characteristic of thin-airfoil
NACA64A006 [1], where the laminar flow separation occurs at
the leading edge and the transition causes the turbulent reattach-
ment. The reattachment point gradually moves rearward with
increasing angles of attack [2]. The small vortexes shed from the
leading edge, which produces strong unsteadiness in the flow. It
is difficult for RANS simulations to resolve this feature, and this
is the main reason that RANS simulations do not give satisfactory
results for this case. According to the limitation of RANS methods,
Fujii [1] proposed that LES should be employed for the prediction
of thin-airfoil stall characteristics. Furthermore, LES has been suc-
cessfully applied for the simulations of stall phenomena [3,4].

As well known, high-order scheme has the advantage over low-
order scheme for the simulation of turbulent flow containing
unsteady vortex shedding. However, the application of high-order
compact schemes still has some challenges, such as robustness and
grid-quality sensitivity [5,6]. This deficiency can be largely
removed by the researches of the Geometric Conservation Law
(GCL) [7–11]. The GCL contains surface conservation law (SCL)
and volume conservation law (VCL). The VCL has been widely stud-
ied for time-dependent grids, while the SCL is merely discussed for
finite difference schemes. Recent research [7] shows that the GCL is
very important for the application of finite difference schemes on
curvilinear grids. If the SCL has not been satisfied, numerical
instabilities and even computing collapse may appear on complex
curvilinear grids during numerical simulation. In order to fulfill the
SCL for high-order finite difference schemes, a conservative metric
method (CMM) is derived by Deng et al. [7]. Not long after, a
symmetrical conservative metric method (SCMM) [12], which
can evidently increase the numerical accuracy on irregular grids,
is proposed based on the CMM. According to the principle of satis-
fying the SCMM, a seventh-order hybrid cell-edge and cell-node
dissipative compact scheme (HDCS-E8T7) has been proposed for
complex geometry [13]. The HDCS-E8T7 has inherent dissipation
to dissipate unresolvable wavenumbers, therefore the filtering is
not needed. The properties of HDCS-E8T7 scheme have been
systemically analyzed by Deng et. al. [14].
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Based on the HDCS-E8T7, a new high-order implicit large eddy
simulation (HILES) is developed following the concept of mono-
tone integrated LES (MILES) [15], i.e. the effects of explicit LES
models are imitated by the truncation error of the discretization
scheme itself. Although the conception of HILES is similar to that
of MILES, HDCS-E8T7 is a new seventh-order compact scheme hav-
ing inherent dissipation, and the HILES based on HDCS-E8T7 can
eliminate the SCL errors, which may contaminate flowfield of the
HILES. Moreover, if we use the seventh-order compact scheme
for LES without subgrid-scale (SGS) model, i.e., HILES, the accuracy
of the flowfield obtained will be seventh-order. However, if subgrid
model, for instance, the Smgorinsky subgrid model is added, the
accuracy of the LES results will be degenerated to the undesirable
second order. If a carefully designed high-order subgrid model is
absent, high-order scheme without model may be better than with
second-order subgrid models for LES [16].

In this paper, we will investigate the performance of the HILES
on curvilinear meshes. Based on the test of flow over a cylinder, the
influence of the SCL errors on the HILES has been shown. Then the
stall phenomena of thin airfoil NACA64A006 have been simulated
by the HILES. In the next section, the governing equations are
given. In Section 3, we will give the numerical method comprising
three main components: the spatial discretization, the grid metric
calculation and the time-integration method. The numerical tests
are presented in Section 4.

2. Governing equations

Three dimensional Navier–Stokes equations in computational
coordinates may be written as
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and heat transfer terms
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where c is the ratio of specific heats, and the viscous coefficient l
can be calculated by the Sutherland’s law. The equation of state
and the energy function are

p ¼ 1
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2
:

In the above u;v and w are the velocity components in x; y and z
directions, respectively, p is the pressure, q is the density and T is
temperature. The non-dimensional variables are defined as
q ¼ q�=q�1; u; v ;wð Þ ¼ u; v;wð Þ�=V�1; T ¼ T�=T�1; p ¼ p�=q�1V�21 ;l ¼
l�=l�1 respectively, and M1 ¼ u1=
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p
;Re ¼ q�1u�1r�=l�1;

Pr ¼ l�1Cp=j�1 are the Mach number, Reynolds number and Prandtl
number, r� is the characteristic length. J is the Jacobi of grid trans-
formation, nt ; nx; ny; nz;gt ;gx;gy;gz; ft ; fx; fy; fz are grid derivatives.
The grid metric derivatives have the conservative form as
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3. Numerical method

3.1. Spatial discretization

A seventh-order finite difference scheme HDCS-E8T7 is
employed to discretize the equations (1). Considering discretiza-
tion of the inviscid terms,
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and theirs semi-discrete approximations,
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where a < 0 is the dissipative parameter employed to control the
dissipation of the HDCS-E8T7. The corresponding bUR

jþ1=2 can be
obtained easily by setting a > 0. Fig. 1 plots the modified wavenum-
ber of the HDCS-E8T7 with different dissipative parameters. It may
be noticed that the resolution of the HDCS-E8T7 is spectral-like.
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