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a b s t r a c t

The simulation of streamer evolution has many technological applications ranging from pollution reduc-
tion to surface treatments. In this paper we study an instability that may affect the discretized form of the
streamer model when a very high electric field is considered and when a representative finite volume
method is used. It is shown that the instability is caused by the advection–reaction terms that represent
the transport and the production of electrons. It is proved that the mesh spacing greatly affects the prop-
erties of the discrete method in terms of stability and accuracy. A stabilization technique is introduced
and tested. The proposed method is effective even when coarse meshes are used.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we analyze some aspects of the stability of a finite
volume scheme for the discretization of the streamer model, see
[1], when very high electric fields are considered. To be more pre-
cise, we study the stability of the discretization of a linear advec-
tion–reaction equation that represents the transport of the
electrons and the impact ionization. The peculiarity of this equa-
tion is that the reaction term is very high and positive thus leading
to exponentially growing solutions in space.

The numerical simulation of streamers has many technical
applications such as, for instance, surface treatments [2,3], predic-
tion of the evolution of partial discharges [4,5] and pollution reduc-
tion [6].

In most of the cases found in the literature the streamer
problem has been tackled using two types of solvers: a Poisson
solver and a solver for a set of advection–reaction equations. Many
approaches have been proposed for the latter problem. One of the
first implemented for this particular problem was the finite differ-
ence method [7]. Another very popular method is the flux
corrected transport one, see [8] for a general description of the
method and [9–11] for some applications. In recent years some sta-
bilized versions of the finite element method have been used too
[12,13]. Also high resolution techniques have been applied to the

simulation of discharge inception: for instance the discontinuous
Galerkin method has been used successfully in [14].

Whatever the chosen simulation technique, in all these cases a
very fine grid is used with a characteristic mesh size of nearly one
micro-meter. In some cases also the adaptive mesh refinement
technique is used to guarantee a sufficient resolution near the head
of the streamer, see [15–17]. From an heuristic point of view the
mesh spacing used in the above mentioned works ensures the sta-
bility of the numerical schemes, however a proper analysis is still
lacking.

To this end, in this work we study the stability of a reference
finite volume scheme with respect to mesh spacing. Our choice
to analyze a finite volume scheme has been dictated by the fact
that a large part of the numerical solvers for the streamer simula-
tion are based on that method. Moreover the finite volume
schemes can manage easily the strong gradients of the ionization
fronts. Finally the finite volume schemes fit well in the framework
of the asymptotic preserving schemes as has been demonstrated in
[18,19] for the Euler equations and, specifically, in [20] for the
streamer equations. The asymptotic preserving schemes guarantee
good stability performances even when the time integration step is
much larger than the plasma relaxation time.

We prove that the discretization of a linear advection–reaction
equation, with a positive advection coefficient, may lead to unsta-
ble finite volume schemes and we analyze how to stabilize them.
For completeness we also state that the characteristic methods
[21] and some of their evolutions such as the ELLAM technique
[22] can provide conservative and stable schemes even when
the reaction coefficient is positive. However those schemes cannot
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be easily incorporated in the asymptotic preserving methods and,
if the discontinuity fronts are not explicitly traced, they are, in gen-
eral, more sensitive to steep gradients.

In the literature there is a huge amount of works dealing with
the analysis of the stability of diffusion–advection–reaction equa-
tions, see, among the many paper, [23–25]. On the contrary, less
works are devoted to the advection–reaction problem, see [26].
Moreover, to the best of our knowledge, there is no work devoted
to the analysis of the stability and the accuracy of the discretiza-
tion of streamer solvers when a very high field is applied.

In this work we introduce a simplified form of the streamer
model for high electric fields. We consider, for the sake of simplic-
ity, a one dimensional model. We concentrate ourselves on the
drift-reaction equation with a fixed electric field (the coupling
between the electric field solver and the drift equation has been
already treated in [18–20]). We show that the mesh size plays a
crucial role in the stability of finite volume schemes and we pro-
pose a stabilization technique that makes them bounded, whatever
the mesh size. In the second part of the paper we study the numer-
ical properties of the scheme we have implemented. Moreover,
since we are aiming to expand our method to 3D cases, we also
propose a technique to enhance its accuracy without resorting to
a mesh refinement. In fact, this would imply an unacceptable
numerical burden in three dimensions.

Let us review the structure of this paper. In Section 2 we intro-
duce the continuous streamer problem and we isolate the drift-
reaction part. The properties of the continuous model are studied.
In Sections 3 and 4 we introduce the discretized form and we study
its properties. In Section 5 we introduce some numerical experi-
ments to back the theoretical estimations and we compare our
approach with an implementation of the characteristic method.
In Section 6, we critically review the results obtained.

2. The continuous problem

Let us introduce a simplified version of the streamer model
[20,1] when a very high electric field is considered:

@ne
@t � @

@x neleE
� �

¼ alejEjne;

dnp

dx ¼ alejEjne;

dE
dx ¼ e

e0
np � ne
� �

;

� d/
dx ¼ E;

8>>>>><
>>>>>:

ð1Þ

where neðt; xÞ; npðt; xÞ are the concentrations of electrons and posi-
tive ions respectively, t 2 ð0; tfin� is the time, tfin is the final time (not
necessarily bounded), x 2 ½0; L� is the spatial variable, L is the length
of the domain, le > 0 is the mobility of electrons, a > 0 is a reaction
coefficient representing the impact ionization, Eðt; xÞ is the electric
field, /ðt; xÞ is the electric potential, e is the electron charge and,
finally, e0 is the vacuum permeability.

If we compare model (1) with the one proposed in [20,1] we
have neglected the negative ions, the recombination terms and
the electron attachment.

System (1) is completed by a set of boundary conditions, in par-
ticular we impose:

neðt;0Þ ¼ ne;bðtÞ; if Eðt;0Þ < 0;
neðt; LÞ ¼ ne;bðtÞ; if Eðt; LÞ > 0;
/ðt;0Þ ¼ /bðtÞ;
Eðt; LÞ ¼ EbðtÞ;

8>>><
>>>:

ð2Þ

where ne;b is a boundary concentration value and /b and Eb are the
boundary potential and electric field respectively. As regards the
initial conditions we impose neð0; xÞ ¼ n0

e ðxÞ and npð0; xÞ ¼ n0
pðxÞ,

where n0
e and n0

p are bounded positive functions.

As we have already said, we concentrate our attention on the
first equation of (1) and we simplify the notation to get

@u
@t
þ c

@u
@x
¼ acu; ð3Þ

where u is the solution and c > 0 is a constant advection speed. In
other words, Eq. (3) is a constant coefficient linear equation which
has to be complemented with an inflow boundary condition
uðt;0Þ ¼ ub, where, for the sake of simplicity, ub is a time-constant
boundary condition, and u0ðxÞ is an initial condition such that
uð0; xÞ ¼ u0ðxÞ.

The solution of Eq. (3) is bounded as long as L <1. In fact its
exact solution is

uðt; xÞ ¼ u0ðx� ctÞeact ; if x� ct > 0;
uðt; xÞ ¼ ubeax; otherwise:

�
ð4Þ

Therefore we have

kuðtÞkL1ð0;LÞ 6 max ubeaL; ku0kL1ð0;LÞe
aL

� �
; t 2 ð0; tfin�: ð5Þ

3. The discretization

3.1. Stability condition

We now introduce a discretization for Eq. (3). Let us consider a
uniform grid with Nc cells sk; k ¼ 1; . . . ;Nc , with cells of size
h ¼ L=Nc and a uniform subdivision t0; . . . ; tn (with n, in principle,
unbounded) of the time interval ð0; tfin� with constant time steps
of size Dt. We define Un

k the mean value of the discrete solution
on the cell sk at time step n where Uk

0 with k ¼ 1; . . . ;Nc is an
approximation of the initial condition. Let

m ¼ cDt
h
; ð6Þ

be the Courant number: we choose Dt such that m < 1 and the
scheme satisfies the Courant–Friedrichs–Lewy (cfl) condition, see
[27].

We consider a first order finite volume discretization of (3).
Therefore we integrate (3) in space on a generic cell sk in the inter-
val ½tn; tnþ1� and we get

h Unþ1
k �Un

k

� �
þ
Z tnþ1

tn
cuðt;hkÞ�cuðt;hðk�1ÞÞ¼

Z tnþ1

tn

Z
sk

acu: ð7Þ

Then we approximate the interface fluxes:Z tnþ1

tn
cuðt;hkÞ � DtcUn

k ;

Z tnþ1

tn
cuðt; hðk� 1ÞÞ � DtcUn

k�1; ð8Þ

and we approximate the source term
R tnþ1

tn

R
sk

acu � DthacUn
k . Then

we obtain

Unþ1
k ¼ ð1� mÞUn

k þ mUn
k�1 þ acDtUn

k : ð9Þ

We can show that scheme (9) is unstable. In fact, supposing that the
discrete solution is positive, then

Unþ1
k ¼ ð1� mþ acDtÞUn

k þ mUn
k�1 P ð1� mþ acDtÞUn

k : ð10Þ

Therefore if

1� mþ acDt > 1; ð11Þ

the solution of (9) in a generic kth cell is unbounded. Using (6), it
can be verified that condition (11) is equivalent to

ha > 1: ð12Þ

This means that, using too coarse meshes, method (9) becames
unstable. To the best of our knowledge, this mesh dependent
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