ARTICLE IN PRESS

Journal of Chromatography B, xxx (2014) xxx-xxx

Contents lists available at ScienceDirect

Journal of Chromatography B

journal homepage: www.elsevier.com/locate/chromb

A review of analytical methods for eicosanoids in brain tissue *

Michael Puppolo¹, Deepti Varma¹, Susan A. Jansen*

Temple University, Department of Chemistry, 1901 North 13th Street, Philadelphia, PA 19122, United States

ARTICLE INFO

Article history: Received 11 November 2013 Received in revised form 26 February 2014 Accepted 5 March 2014 Available online xxx

Keywords: Eicosanoids Brain tissue Ultra high pressure liquid chromatography-mass spectrometry High pressure liquid chromatography-mass spectrometry Gas chromatography-mass spectrometry Tandem mass spectrometry

ABSTRACT

Eicosanoids are potent lipid mediators of inflammation and are known to play an important role in numerous pathophysiological processes. Furthermore, inflammation has been proven to be a mediator of diseases such as hypertension, atherosclerosis, Alzheimer's disease, cancer and rheumatoid arthritis. Hence, these lipid mediators have gained significant attention in recent years. This review focuses on chromatographic and mass spectrometric methods that have been used to analyze arachidonic acid and its metabolites in brain tissue. Recently published analytical methods such as LC–MS/MS and GC–MS/MS are discussed and compared in terms of limit of quantitation and sample preparation procedures, including solid phase extraction and derivatization. Analytical challenges are also highlighted.

© 2014 Published by Elsevier B.V.

1. Introduction

Eicosanoids are specific biomarkers of inflammation. Their biosynthesis from polyunsaturated fatty acids can be catalyzed by cyclooxygenase (COX-2), lipoxygenases (LOX), and cytochrome P450 enzymes. Depending on the mechanism/pathway of biosynthesis and parent molecule, different classes of eicosanoids are defined. Brain lipids such as neuroprostanes are produced by peroxidation of docosahexaenoic acid. These lipids are different from eicosanoids and will not be the subject of this review. This article focuses on eicosanoids from Arachidonic Acid (AA).

Arachidonic acid (ϖ -6 polyunsaturated fatty acid) can be metabolized to hydroxyeicosatetraenoic acids (HETEs), dihydroxyeicosatetraenoic acids (DiHETEs), epoxyeicosatreinoic acids (EETs), prostaglandins (PGs) and thromboxane (TX) (Fig. 1). These endogenous eicosanoids are present in small levels in biological fluids and tissues including the brain. In the brain, these markers are important to maintain homeostasis and normal functions such as synaptic plasticity related to long-term depression [1] and protecting cortical neurons against glutamate toxicity [2]. On the other

http://dx.doi.org/10.1016/j.jchromb.2014.03.007 1570-0232/© 2014 Published by Elsevier B.V. hand, alterations in the levels of these lipids in the brain have been associated with numerous diseases such as Alzheimer's, Parkinson's, Multiple sclerosis, schizophrenia, and epilepsy [3]. The past decade has produced numerous excellent reviews describing the metabolism of these lipid molecules and their role in diseases [4–7].

1.1. Cycloxygenase enzymes, prostaglandins and brain

Cyclooxygenase enzyme is present in the human body in the form of three isozymes: COX-1, COX-2 and COX-3. COX-1 is thought to be only responsible for maintaining homeostasis in numerous physiological functions in the body [8]. COX-3, which was discovered only in 2003, is considered to be an intron-splice variant of COX-1 [9]. On the other hand, COX-2 is involved in numerous inflammatory processes [9]. Both COX-1 and COX-2 are expressed in brain tissue [10]. Additionally COX-1 and COX-2 enzymes can catalyze the reaction that converts arachidonic acid to a stable hydroxyendoperoxide (PGH₂) [11,12]. PGH₂ is then converted into primary prostanoids by various enzymes [11,12]. Prostanoids can be classified into prostaglandins (PGE₂, PGF₂ and PGD₂), prostacyclins (PGI₂) and thromboxanes (TXA₂). PGD₂ is the most abundant prostaglandin synthesized in the central nervous system. It not only regulates functions like temperature and sleep [13] but it also protects the brain from excitotoxic injury [14]. PGE₂ is involved in brain maturation and in regulation of synaptic activity and plasticity [15]. Furthermore being one of the most abundant prostaglandins, PGE₂ is involved in processes leading to classic signs of inflammation

[☆] This paper is part of the special issues ACIDS edited by Alexander A. ZOERNER and Dimitrios TSIKAS IG002157 Special Issue: Analysis of Acids/ZOERNER.

^{*} Corresponding author. Fax: +1 215 2041532.

E-mail address: susan.varnum@temple.edu (S.A. Jansen).

¹ These authors contributed equally to this work.

ARTICLE IN PRESS

M. Puppolo et al. / J. Chromatogr. B xxx (2014) xxx-xxx

Nomenclature

AA	Arachidonic acid	
BHT	Butylated hydroxyl toluene	
CID	Collision-induced dissociation	
CLASS	Comprehensive lipidomic analysis by separation	
	simplification	
COX	Cyclooxygenase	
CSF	Cerebral spinal fluid	
CV	Coefficient of variance	
CYP-450	Cytochrome P450	
CyPGs	Cyclopentenone prostaglandins	
DiHETEs Dihydroxyeicosatetraenoic acids		
DiHETrE	s Dihydroxyeicosatreinoic acids	
DTPA	Diethylenetriaminepenta-acetic acid	
ECNCI	Electron capture negative chemical ionization	
EDTA	Ethylenediaminetetra-acetic acid	
EETs	Epoxyeicosatrienoic acids	
ESI	Electrospray ionization	
ESI-LC-N	AS/MS Electrospray ionization coupled to high pres-	
	sure liquid chromatography with tandem mass	
	spectrometry	
fmol	Femtomol	
GC	Gas chromatography	
GC-FID	Gas chromatography-flame ionization detection	
GC-MS	Gas chromatography-mass spectrometry	
GC-MS/	MS Gas chromatography-tandem mass spectrome-	
	try	
GC-MS/	NICI Negative ion chemical ionization coupled to gas	
	chromatography-mass spectrometry	
HESI	Heated electrospray ionization	
HETEs	Hydroxyeicosatetraenoic acids	
HETP	Height equivalent theoretical plates	
HILIC	Hydrophilic interaction chromatography	
HPETEs	Hydroxyperoxyeicosatetraenoic acid	
HPLC	High pressure liquid chromatography	
HPLC-U	V High pressure liquid chromatography-ultraviolet	
	detector	
LC	Liquid chromatography	
LC-MS	Liquid chromatography–mass spectrometry	
LC-MS/MS Liquid chromatography-tandem mass spec-		
	trometry	
LOD	Limit of detection	
LOQ	Limit of quantitation	
LOX	Lipoxygenases	
	Leukotrienes	
IVIKIVI	Multiple reaction monitoring	
IVIS NACINAC	Mass spectrometry	
IVIS/IVIS	2 (2.2 monthe limine) athyl	
NE-OII	2-(2,3-naphthalimino)ethyl-	
NICI	trinuorometnanesuipnonate	
	Negative ion chemical ionization	
NP-HPL	Normal-phase high pressure liquid chromatogra-	
pily ODC silies Ostada subsited silies		
DCA	Ca Octadecyisiiyi-siiica	
DEB	Principle component analysis	
r r D DØ	Dicogram	
PS PCU	ricografii Hydroxyandanaroyida	
rGr12 DCc	Drostaglanding	
ΓG3 Ω1		
03	Quadrupole 1 Quadrupole 2	
	Quadrupole time_of tlight mass spectrometer	
OTDAD	Quadrupole_linear ion tran	
QIKAP	Quaurupole-iiilear ioir trap	

	RP-HPL	C Reverse-phase high pressure liquid chromatogra-
		phy
	SAH	Subarachnoid hemorrhage
	sEH	Soluble epoxide hydrolase
	SIM	Selective ion monitoring
	sMRM	Scheduled multiple reaction monitoring
	SPE	Solid phase extraction
	SRM	Selected reaction monitoring
	SV	Symptomatic cerebral vasospasm
	TBI	Traumatic brain injury
	TLC	Thin layer chromatography
	TOF	Time-of-flight
	TX	Thromboxane
	UPLC	Ultra high pressure liquid chromatography
UPLC-MS/MS Ultra high pressure		/IS/MS Ultra high pressure liquid chromatography-
		tandem mass spectrometry
	UV	Ultraviolet

and pain [16]. PGF_2 plays an important role in brain injury and pain [16]. PGI_2 and TXA_2 are potent vasodilators and vasoconstrictors respectively.

1.2. Lipoxygenase enzymes, leukotrienes and the brain

Lipoxygenease are a group of enzymes that catalyzes the reaction, which involves the addition of oxygen to AA producing hydroxyperoxyeicosatetraenoic acid (HPETEs) [17,18]. HPETE then reduces to give leukotrienes (LTs) and hydroxyeicosatetraenoic acid (HETEs) [19]. Cysteinyl leukotrienes, which include LTC4, LTD4 and LTE4, are found to alter cerebral vessel functions [20] and disrupt the blood brain barrier [20]. Moreover, they have been related to brain edema formation [20]. They are also produced in response to numerous acute brain injuries [21]. LTB4 may also be involved in the pathogenesis of ischemic brain edema [22]. Another role LTB₄ plays in inflammation is attracting leukocytes [97]. Inflammation as a result of alterations in blood flow and vascular permeability can be described by the actions of LTC₄ and LTD₄ [97]. Leukotrienes can be involved in inflammatory diseases such as asthma. HETEs are potent vasoactive agents and are altered in cerebrovascular pathologies [22].

1.3. Cytochrome P450 enzymes (CYP-450), DiHETEs, HETEs and the brain

AA undergoes metabolism by CYP-450 to give epoxyeicosatrienoic acid (EETs). CYP enzyme produces four regioisomers of EET from AA: 5,6-, 8,9-, 11,12-, and 14,15-EET [23]. EETs are quickly metabolized in the presence of soluble epoxide hydrolase (sEH) to the corresponding inactive diols, the DiHETEs [24,25]. In the brain, EETs are involved in controlling the cerebral blood flow (CBF) [26]. They are neuroprotective agents because of their antiinflammatory and anti-thrombotic effects [26]. Zhang et al. found that deletion of sEH, the enzyme that metabolizes EETs to DiHETEs, is protective against ischemic brain injury [27].

2. Quantification of eicosanoids

Currently, immunoassays [28], GC–MS [29], LC–MS [30] and LC–MS/MS [31,32] have been used to analyze eicosanoids. For a long time, immunoassays, (enzyme-linked immunoassays and radio-labeled immunoassays) were considered to be the standard method for lipid analysis. Though these assays were sensitive, they suffered from reproducibility and reduced specificity. A regular

2

Download English Version:

https://daneshyari.com/en/article/7617660

Download Persian Version:

https://daneshyari.com/article/7617660

Daneshyari.com