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a b s t r a c t

A numerical method of large eddy simulation (LES) combined with a characteristic-based split scheme
(CBS) is proposed. The CBS scheme is introduced to discretize the motion equation in the time domain
along the characteristic line, and the space domain is discretized by the split algorithm, which calculates
the velocity and pressure separately. Turbulent flow simulations in a lid-driven cubical cavity and two
circular section 90� pipes are conducted, and the results are validated by comparison with experimental
data and other direct numerical simulation results. For a circular section 90� pipe, an additional pair of
vortexes that is near the curved section inner side has been observed, and their rotational direction is
the same as that of the main vortex. To the author’s knowledge, this type of four-vortex structure has
not been previously reported.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Large eddy simulation (LES) directly calculates the large and
energetic vortical structures in turbulent flows, while modeling
the smaller-scale eddies. Therefore, compared to Reynolds-averaged
Navier–Stokes (RANS) models, the advantages of LES are significant.
RANS is effective for steady simulations of fluid flow, but there are
some theoretical imperfections when RANS equations are used to
simulate unsteady flows. Solutions from the RANS equations usually
deteriorate when the flow field of interest involves large-scale
separations.

Nevertheless, generalization of LES methods to industry is still
problematic. Industrial flows are usually physically complex, highly
unsteady, and have large Reynolds numbers. The key challenges
that LES models must meet for overall success in industrial
applications include accurate flow averaging reflecting the true
flow, minimization of discretization errors, performance of the
simulation in a time and cost-effective manner [1]. Although the
number of LES models has increased almost exponentially in recent
years, the original Smagorinsky model is being favored in a large
majority of cases. Due to the intricate and natural coupling between
numerical discretization and LES modeling, the performance of
simulation is solely dependent on the numerical framework. As
noted in the work of Geurts [2] and Chow and Moin [3], low-order

numerical discretization can be as influential as the subgrid scale
(SGS) model. The finite volume method is widely used for LES
because it is easy to compose high-order schemes [4].

The finite element method is not used as widely as that of
finite volume in computational fluid dynamics (CFD), although it
is an important numerical procedure in the area of numerical
simulations. Over the past thirty years, some advanced finite
element schemes have been developed in order to solve convection
dominated flow problems, such as the streamline upwind Petrov–
Galerkin method [5], the Taylor–Galerkin method [6], the Galerkin
least square (GLS) method [7], and the characteristic Galerkin (CG)
method [8]. Among these methods, the CG method discretizes the
time domain along the characteristic line, and it is especially effec-
tive at solving convection dominated flow problems. Donea et al. [9]
extended the fractional step method proposed by Chorin [10] into
a finite element context, and the fractional step algorithm was
used as a stabilization technique to restrain spurious pressure
interpolations violating the so-called Ladyzhenskaya–Babuška–
Breezi condition. Zienkiewicz and Codina [11] presented the well-
known characteristic-based split (CBS) algorithm by introducing
Taylor expansion and combining it with a split algorithm into the
CG method. The CBS procedure combines the advantages of the
characteristic method and the split algorithm, and it is effective
and flexible due to many additional improvements that raise
stability and accuracy for incompressible flows in complex geome-
tries. Codina et al. [12,13] compared CBS procedures with other
formulations, such as GLS and SGS, to solve the incompressible
Navier–Stokes equations. The comparisons showed that all these
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formulations are similar, and are stable for the convective term and
the pressure interpolation. Over more than ten years of develop-
ment, the CBS procedure has been applied to simulate different flow
problems, including turbulent incompressible flows [14].

The present work concentrates on the incorporation of a semi-
implicit CBS method to LES. The finite element discrete equations
for incompressible flows are derived using the framework of LES,
and these equations are applied to solve three dimensional flow
problems. Numerical simulations of the flows in a lid-driven cubi-
cal cavity and circular section 90� pipes are conducted. The results
are compared with experimental data and direct numerical simu-
lation (DNS) results. The comparisons show that the proposed
scheme can simulate turbulent flows accurately, although the for-
mulae of second order accuracy both in time and space have been
used. Furthermore, for a circular section 90� pipe, an additional
pair of vortexes has been observed, which, to the author’s knowl-
edge, has been not reported before.

2. Mathematical model and numerical algorithm

2.1. LES mathematical algorithm

For incompressible flow, by applying the grid filter to the conti-
nuity and momentum equations, the following expressions can be
obtained:
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where variables accompanied by a macron (‘‘–’’) here, as elsewhere,
are resolved scale variables after filtration and sij is the subgrid
stress. Based on the widely used subgrid eddy viscosity model,
the subgrid stress can be written as

sij ¼ �2msgsSij þ
1
3

dijskk: ð3Þ

In Eq. (3) above, Sij is the strain rate tensor in resolved scale and msgs

is the subgrid eddy viscosity coefficient having the following
format:

msgs ¼ ðCSDÞ2ð2SijSijÞ
0:5
; ð4Þ

where CS is the Smagorinsky coefficient, which can be dynamically
determined by the dynamic Smagorinsky model (DSM) [15].

Substituting Eq. (3) into Eq. (2), we obtain
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For concision, the total viscosity (m + msgs) can be written as m0 and
the term ð�p=qþ skk=3Þ as �p. Therefore, the governing equations of
LES introducing the subgrid eddy viscosity coefficient for incom-
pressible flow are
@�ui

@xi
¼ 0; ð6Þ

@�ui

@t
þ @ð

�ui�ujÞ
@xj

¼ � @
�p

@xi
þ @

@xj
m0

@�ui

@xj
þ @

�uj

@xi

� �� �
: ð7Þ

Because the DSM is employed, CS is not a constant value, and even a
negative value is possible. A negative value for CS means that the
energy is transferred from small to large scales in the calculated re-
gion, and numerical instability may occur. Therefore, the following
limitations are applied to CS:

C2
s ¼ 0; if Cs < 0; ð8Þ

C2
s ¼ C2

Limit; if Cs > CLimit: ð9Þ

Here, CLimit is defined according to the Courant–Friedrich–Levy
condition

mþ mLimit ¼
D2

Dt
; ð10Þ

where Dt is the time step of the calculation and D is the grid filter
width, which, in the present work, is determined by selecting the
minimum of the three coordinate directions, D = min(Dx, Dy, Dz).

2.2. Time discretization

For simplification, the macron symbol is omitted in the follow-
ing formulae. Consequently, the left term of Eq. (7) can be written
in the form of the total derivative dui/dt based on the characteristic
method. In the characteristic method, the characteristic corre-
sponds to the path line of a particle. An equation for these charac-
teristics can be written as

dxi

dt
¼ ui: ð11Þ

Here, xi(i = 1, 2, 3) is the trajectory and ui the characteristic velocity
of particle i, where the velocity is constant if a linear convection
equation (negligible diffusion in Eq. (7)) is considered. Therefore,
along the characteristics given by Eq. (11), Eq. (7) can be written as
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The discretization of this equation yields
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The above parameter h ranges from 0 to 1 corresponding to differ-
ent time discretization formulae. In the present work, we take
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where the third term on the right hand side is the stabilized term.
The semi-implicit formulation given by Eq. (14) in time means that
an explicit scheme is used to solve the velocity, and an implicit
scheme is used to solve the pressure.

2.3. Split procedure and space discretization

The split procedure CBS operator is introduced to calculate the
velocity and pressure separately. The general solution process
consists of three steps: (1) prediction, (2) projection, and (3)
correction. Because eight-noded-trilinear hexahedral elements
are used in this study to discretize the space domain, the basic
Lagrangian interpolation functions are three-order linear. There-
fore, the accuracy of the space discretization is second order.

162 L. Tan et al. / Computers & Fluids 94 (2014) 161–172



Download English Version:

https://daneshyari.com/en/article/761786

Download Persian Version:

https://daneshyari.com/article/761786

Daneshyari.com

https://daneshyari.com/en/article/761786
https://daneshyari.com/article/761786
https://daneshyari.com

