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a b s t r a c t

In this paper, a new method for computation of all stabilizing PI controllers is given. The method is based
on the plant model in time domain, and by using the extraordinary feature results from Kronecker sum
operation, an explicit equation of control parameters defining the stability boundary in parametric space
is obtained. Beyond stabilization, the method is used to shift all poles to a shifted half plane that guaran-
tees a specified settling time of response. The stability regions of PID controllers are given in (kp,ki), (kp,kd)
and (ki,kd) plane, respectively. The proposed method is also used to compute all the values of a PI control-
ler stabilizing a control system with uncertain parameters. The proposed method is further extended to
determine stability regions of uncertain coefficients of the system. Examples are given to show the ben-
efits of the proposed method.

� 2009 Published by Elsevier Ltd.

1. Introduction

Despite continual advances in control theory and development
of advanced control strategies, the proportional, integral, and
derivative (PID) control algorithm still finds wide applications in
industrial process control systems. It has been reported [1] that
98% in of the control loops in the pulp and paper industries are
controlled by proportional integral (PI) controllers. Moreover, more
than 95% of the controllers used in process control applications are
of the PID type [2]. The popularity among industrial practitioners
stems from the facts that the PID control structure is simple and
its principle is easy to understand and that the PID controllers
are deemed to be satisfactory and robust for a vast majority of pro-
cesses. The primary problem associated with the use of PID con-
trollers is tuning, that is, the determination of PID controller
parameters for satisfactory control performance.

Since the primary requirement of the candidate PID controller
parameters is that of making the closed-loop system stable, it is of-
ten desired to construct the complete sets of stabilizing PID param-
eters. For instance, as fuzzy PID controllers have been used more
and more widely in various control systems [3–5], it is necessary
to known the complete sets of stabilizing PID parameters. And as
the PID optimization technique develops [6–9], with the complete
sets of stabilizing PID controller parameters being available for a
given process, it can avoid the time consuming stability check for

each set of PID controller parameters in the search process and
thereby to save the controller tuning time. Up to now, there has
been a great amount of research work on the determination of sta-
bilizing sets of PI (proportional integral) and PID (proportional
integral derivative) controllers [10–12]. A complete analytical
solution based on the generalized version of the Hermite–Biehler
theorem has been proposed [10] for computation of all stabilizing
constant gain controllers for a given plant. In Ref. [11], the compu-
tation of all stabilizing PI and PID controllers for a given plant by
linear programming has been proposed. This approach, besides
its numerical efficiency, has also revealed important structural
properties of PI and PID controllers. It shows that for a fixed pro-
portional gain, the set of stabilizing integral and derivative gains
lie in a convex set. Such an approach can deal with systems that
are open loop stable or unstable, minimum or non-minimum
phase. However, the computation time for this approach increases
in an exponential manner as the order of the system increases,
which is a disadvantage of the method. An alternative approach
for fast computation of stabilizing PI and PID controllers based
on the use of Nyquist plot has been proposed in Refs. [12,13]. Some
fast approaches based on the gridding of frequency have been gi-
ven in Refs. [14,15]. A stability boundary locus approach for the de-
sign of PI and PID controllers has been proposed in Ref. [16]. A
parameter space approach using the singular frequency concept
has been given in Ref. [17] for design of robust PID controllers.

Usually, controller design in classical control engineering is
based on a plant with fixed parameters. However, in the real world
most practical system models are not known exactly, meaning that
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the plant contains uncertainties. Thus, sometimes it is desirable to
know the permissible varying range of plant parameters once the
controller parameters are fixed. That is, to determine the stability
regions of plant parameters. Many approaches to determine the
stabilizing sets of PI/PID parameters employ the specific form of
PI/PID controllers or the characteristic equation of PI/PID con-
trolled system, thus can not be used to determine the stability re-
gions of plant uncertain parameters.

In this paper, a new method is given for computation of stabiliz-
ing PI and PID controllers in the parameter plane. The novel ap-
proach makes use of the extraordinary feature of the Kronecker
summation operation and we obtain the explicit equation that PI
and PID controllers parameters corresponding to the boundary of
stability region must satisfy. The proposed method is also used
for computation of stabilizing PI and PID controllers for relative
stabilization. Actually, the proposed method has a wider applica-
tion. It is further extended to determine stability regions of uncer-
tain parameters in coefficient space.

The paper is organized as follows: the proposed method is pre-
sented in Section 2. In Section 3, the computation of PI controllers
for relative stabilization is given. In Section 4, the proposed method
is used to determine the stability region of PID controllers. The
computation of PI controllers for interval plant stabilization is gi-
ven in Section 5. In section 6, the proposed method is extended
to the determination of stability regions of uncertain coefficients.
Concluding remarks are given in Section 7.

2. Stabilization using a PI controller

In early work, many methods proposed to compute the stabiliz-
ing sets of PI/PID controllers are based on determining the stability
boundary of parameters, the essence of which is to find all the val-
ues of parameters which will render pure imaginary roots. Here we
study an alternative procedure: Kronecker sum method.

Kronecker summation of two matrices and its properties:
In matrix algebra [18,19] the Kronecker sum of square matrices

M1(n1 � n1) and M2(n2 � n2) is defined as M1 �M2 ¼ M1 � In2þ
In1 �M2, where M1 2 Rn1�n1 ; andM2 2 Rn2�n2 . Here � denotes the
Kronecker summation and � the Kronecker product operations. The
most critical feature of the Kronecker summation of M1 and M2 is
that this new square matrix M1 �M2 2 Rðn1 ;n2Þ�ðn1 ;n2Þ has n1 � n2

eigenvalues which are indeed pair-wise combinatoric summations
of the n1 eigenvalues of M1 and n2 eigenvalues of M2 [18]. That is,
the Kronecker sum operation, in fact, induces the ‘‘eigenvalue addi-
tion” character to the matrices. We take advantage of this feature
to obtain the equation that all the values of (kp,ki) that render pure
imaginary roots must satisfy.

Consider the single input, single output (SISO) control system of
Fig. 1 where

GðsÞ ¼ NðsÞ
DðsÞ ð1Þ

is the plant to be controlled and C(s) is a PI controller of the form

CðsÞ ¼ kp þ
ki

s
¼ kpsþ ki

s
ð2Þ

The characteristic equation of the closed-loop system is

CEðsÞ ¼ sDðsÞ þ ðkpsþ kiÞNðsÞ
¼ fnðkp; kiÞsn þ � � � þ f1ðkp; kiÞsþ f0ðkp; kiÞ ð3Þ

Transform Eq. (3) to differential equation matrix and define

_x1 ¼ x2

_x2 ¼ x3

..

.

_xn ¼ � f0ðkp ;kiÞ
fnðkp ;kiÞ

x1 � f1ðkp ;kiÞ
fnðkp ;kiÞ

x2 � � � � � fn�1ðkp ;kiÞ
fnðkp ;kiÞ

yields

_X ¼ AX ð4Þ

where _X ¼ ½ _x1; . . . ; _xn�T ; _X ¼ ½x1; . . . ; xn�T

A ¼

0 1 0 0 � � � 0
0 0 1 0 � � � 0
..
.

0 0 1 � � � ..
.

..

. ..
. ..

. . .
. ..

.
0

0 0 0 � � � 0 1
� f0ðkp ;kiÞ

fnðkp ;kiÞ
� f1ðkp ;kiÞ

fnðkp ;kiÞ
� f2ðkp ;kiÞ

fnðkp ;kiÞ
� � � � � � � fn�1ðkp ;kiÞ

fnðkp ;kiÞ

2
66666666664

3
77777777775

n�n

The relation between Eqs. (3) and (4) is given by the following
equation:

CEðsÞ ¼ fnðkp; kiÞdetðsI � AÞ ¼ 0 ð5Þ

It can be seen from Eqs. (3) and (5) that s is the root of Eq. (3) as well
as the eigenvalues of matrix A.

Due to the fact that A is a constant matrix, the complex conju-
gates of s also satisfy Eq. (5).

detðs�I � AÞ ¼ 0 ð6Þ

Therefore, if s = jx is the root of Eq. (3), it must be the eigenvalue of
matrix A. And at the same time, s� = �jx is also the root of Eq. (3)
and the eigenvalue of matrix A. Since the sum of two eigenvalues
s = jx and s� = �jx is zero then the Kronecker sum of two matrices
must be singular when such hkp; ki;xi correspondence occurs. That
is,

ACE ¼ det½A� A� ¼ 0 ð7Þ

Note that Eq. (7) does not contain s and is the function of (kp,ki). For
every value (kp,ki) that satisfy Eq. (7), Eq. (3) will have a pair of con-
jugate imaginary roots or roots at origin. As we know, the imaginary
axis and the origin are the only places that the stability shift of the
system will occur. Thus, Eq. (7) defines the boundary of the stability
region in kp–ki plane. The stability boundary may divide the para-
metric plane into several separate regions. To determine the actual
stability regions, choose one point in one separate region, which
will result in a polynomial, determine the stability posture of the
polynomial by calculating the roots of polynomial. The correspond-
ing system is stable if the polynomial has no right half plane (RHP)
root. Then by executing the D-subdivision method [20], the pro-
spective region is a stable one. Repeating the same procedure and
test other separated regions and all stability regions can be
determined.

2.1. Example 1

Consider the control system of Fig. 1 with transfer function

GðsÞ ¼ NðsÞ
DðsÞ ¼

s3 þ 4s2 � sþ 1
s5 þ 2s4 þ 32s3 þ 14s2 � 4sþ 50

ð8Þ
Fig. 1. A SISO control system.
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