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a b s t r a c t

In this paper, a novel robust adaptive acoustic vector sensor beamformer based on shrinkage is derived.
Unlike many existing methods, the proposed method is completely automatic (or so-called user param-
eter-free), which means, it do not need the choice of user parameters. The proposed diagonal loading
algorithms use shrinkage-based covariance matrix estimates, instead of the conventional sample covari-
ance matrix, in the standard Capon acoustic vector sensor beamforming formulation. The numerical
results show that our method is robust against errors on the steering vector and small sample sizes,
and meanwhile gives high output signal to interference plus noise ratio (SINR).

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The hydrophone, an omnidirectional underwater microphone,
is the most common sensor for listening to underwater sound.
Directional acoustic sensors [1,2], however, have many important
applications [3,4]. One important class of directional sensors is
the acoustic vector sensor which measures the scalar acoustic
pressure along with the acoustic particle motion (velocity or accel-
eration). With this additional vector measurement, these direc-
tional sensors feature many advantages over conventional
omnidirectional hydrophone sensors [5–19]. A single vector sensor
can steer an unambiguous beam in 3D space, albeit typically with
course resolution. In any array configuration, they are capable of
attenuating spatial ambiguity lobes. In the important special case
of a line array configuration, vector sensors can eliminate conical
or left/right ambiguity. Vector sensors also provide the ability to
‘‘undersample” the acoustic wave without spatial aliasing (sensors
spaced greater than half a wavelength apart). Vector sensors fea-
ture improved array gain and detection performance over omnidi-
rectional sensors. As a result, vector sensors can be an enabling
technology when the size of an array is limited.

Along with their advantages, vector sensors also pose additional
practical complexities. Vector sensors are more sensitive than
hydrophones to flow noise at low frequencies. This entails careful
calibration including scaling the particle motion measurements
by the acoustic impedance. Finally, since each acoustic vector sen-
sor has four acoustic channels, adaptive beamforming can become

difficult in a sample limited regime, especially with many sensors
[20–22].

The Standard Capon Beamformer [sometimes known as MVDR
(Minimum Variance Distortionless Response) beamformer] [23–25]
is an optimal spatial filter that maximizes the array output signal
to interference plus noise ratio, provided that the true covariance
matrix and the signal steering vector are accurately known. How-
ever, the covariance matrix can be inaccurately estimated due to
limited data samples and the knowledge of the steering vector
can be imprecise due to look direction errors or imperfect array
calibration. Whenever these factors exist, there is a clear perfor-
mance degradation for the standard Capon beamformer. Therefore,
adaptive beamforming approaches robust to small sample sizes
problems and steering vector errors are needed [26].

One of the most well-known robust adaptive beamforming ap-
proaches is diagonal loading [26]. The main drawback of this meth-
od is that there is no clear way to choose the diagonal loading level
reliably. Several recent robust adaptive beamformers have been
proposed [26–32], which can be regarded as diagonal loading ap-
proaches, with the diagonal loading level calculated based on the
uncertainty set of the array steering vector. However, we still need
to specify the parameter related to the size of the uncertainty set.
Indeed, fully parameter-free robust adaptive beamformers are
scarce.

We provide alternative approaches for the fully automatic com-
putation of the diagonal loading level. We replace the conventional
sample covariance matrix used in the standard Capon acoustic vec-
tor sensor beamformer [6,20,22] by an enhanced estimate based on
a shrinkage method [33,34], the so-called ‘‘shrinkage method”
applies a diagonal loading to the covariance matrix where the
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weighting is derived from the data. Numerical examples are pre-
sented to compare the performance of the proposed acoustic vec-
tor sensor beamformers with that of the standard Capon acoustic
vector sensor beamformer in terms of output signal to interference
plus noise ratio and signal-of-interest power estimation.

The rest of this paper is organized as follows: Section 2 presents
the problem formulation. In Section 3, two proposed shrinkage-
based fully automatic robust adaptive acoustic vector sensor beam-
formers are given. Numerical results are provided in Section 4.

2. Problem formulation

Consider an array comprising M vector sensors and let R denote
the theoretical covariance matrix of the array output vector. We
assume that R > 0 (positive definite) has the following form:

R ¼ r2
0a0a�0 þ Q ð1Þ

where r2
0 denotes the power of the signal-of-interest, a0 is the

acoustic vector array steering vector [1] of the signal-of-interest
with ||a0||2 = 4M, and Q is the interference-plus-noise covariance
matrix. Under ideal conditions, i.e., a0 and R are accurately known,
the standard Capon acoustic vector sensor beamformer maximizes
the output signal to interference plus noise ratio and the optimal
value is SINRopt ¼ r2

0a�0Q�1a0. In practice, the exact covariance
matrix R is unavailable. Therefore, R is replaced by the sample
covariance matrix R̂ ¼ 1

N

PN
n¼1yðnÞy�ðnÞ, with N denoting the number

of samples and y(n) representing the nth sample. As N increases, R̂
converges to R, and the value of the corresponding signal to inter-
ference plus noise ratio will approach SINRopt eventually. However,
when R̂ contains samples from signal-of-interest (e.g., in mobile
communications applications), the convergence rate of the standard
Capon acoustic vector sensor beamformer can be very slow
(N >> 4M is required) [6,20]. Consequently, the performance of
the standard Capon acoustic vector sensor beamformer degrades
substantially in the presence of small sample sizes problems, even
when a0 is exactly known. Moreover, the mismatch between the
true and assumed steering vectors (a0 and a) can also significantly
degrade the performance of the standard Capon acoustic vector sen-
sor beamformer.

To improve the performance of the standard Capon acoustic
vector sensor beamformer, we replace R̂ by an enhanced covari-
ance matrix estimate based on a shrinkage-based method [33].
The enhanced estimate is obtained by linearly combining R̂ and a
shrinkage target (a given matrix with some structure) in an opti-
mal mean-squared error (MSE) sense, which can be done via both
analytical and convex optimization approaches as shown in the
next section.

3. Shrinkage-based robust adaptive beamforming

A linear shrinkage estimate, which we refer to as the balanced
linear combination (BC) [33], has the form:

eR ¼ aIþ ð1� aÞR̂ ð2Þ

where a is the shrinkage intensity, eR is an enhanced estimate of R
and we use the most commonly employed shrinkage target – the
identity matrix I. We also consider a more general linear combina-
tion (GLC) [34]:

~R ¼ aIþ bR̂ ð3Þ

The shrinkage parameters for both BC and GLC can be chosen by
minimizing (an estimate of) the mean-squared error of the estima-
tor eR, where mean-squared error of eR is EfkeR � Rk2g.

Note that the constraints a e [0,1] for BC and a � 0, b � 0 for
GLC can be imposed to guarantee that eR � 0. Alternatively, we
can impose eR � 0 directly for both BC and GLC.

We consider the mean-squared error minimization problem for
GLC first.

MSEðeRÞ ¼ kaI� ð1� bÞRk2 þ b2fkR̂ � Rk2g
¼ a2M � 2að1� bÞtrðRÞ þ ð1� bÞ2kRk2

þ b2EfkbR � Rk2g ð4Þ
where MSE ðeRÞ denotes the mean-squared error of eR.

The optimal values for b and a can be readily obtained by differ-
entiating Eq. (4) with respect to b and a:

b0 ¼
c

qþ c
ð5Þ

a0 ¼ vð1� b0Þ ¼ v q
qþ c

ð6Þ

where q ¼ EfkbR � Rk2g, v ¼ trðRÞ
4M , and c = ||vI � R||2. We note that

b0 e [0,1] and a0 � 0.
To estimate a0 and b0 from the given data, we need an estimate

of q, which can be calculated as (see [33] for details):

q̂ ¼ 1
N2

XN

n¼1

kyðnÞk4 � 1
N
kbRk2 ð7Þ

Consequently, we can get estimates for a0 and b0:

b̂0 ¼
ĉ

q̂þ ĉ
ð8Þ

â0 ¼ v̂ð1� b̂0Þ ð9Þ

where v̂ ¼ tr bR� �
4M , and ĉ ¼ kv̂I� bRk2. Note that â0 and b̂0 satisfy the

constraints a � 0 and b � 0. In addition, note that
cþ q ¼ EfkbR � v̂Ik2g, an estimate of which is given by kbR � v̂Ik2.
Then we can get alternative estimates of a0 and b0 (we need to guar-
antee that they are nonnegative): we have two methods to obtain
the enhanced estimates of the covariance matrix, i.e.

eRGLC ¼ â0Iþ b̂0
bR ð10Þ

and

eRBC ¼ â0Iþ ð1� â0ÞbR ð11Þ

Using one of the above enhanced estimates eR in lieu of R̂ in the
standard Capon acoustic vector sensor beamformer formulation
yields the shrinkage-based robust adaptive beamformer:

bw ¼ eR�1a

a�eR�1a
. The resulting beamformer output signal to interference

plus noise ratio is given by SINR ¼ r2
0j ew�a0j2
ew�Q ew , and the signal-of-

interest power estimate is r̂2
0 ¼ ew� eR ew.

From (10) and (11), we note that the shrinkage-based robust
adaptive acoustic vector sensor beamformers are diagonal loading
approaches with the diagonal loading levels (â0=b̂0 for GLC and
â0=ð1� â0Þ for BC) determined automatically from the observed
data samples fyðnÞgN

n¼1.

4. Numerical results

We present below several numerical examples comparing the
performance of the shrinkage-based robust adaptive acoustic vec-
tor sensor beamformers with that of the standard Capon acoustic
vector sensor beamformer. In all examples, we assume a uniform
linear array with M = 8 acoustic vector sensors and half-wave-
length inter-element spacing. The noise is assumed to be spheri-
cally isotropic noise [1–9]. A signal-of-interest with a 5 dB power
is assumed to impinge on the array from {60�, 90�}, and four inter-
ferences, each with a 10 dB power, are assumed to be present at
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