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a b s t r a c t

In the present work, lattice Boltzmann method (LBM) is applied for simulating flow in a three-dimen-
sional lid driven cubic and deep cavities. The developed code is first validated by simulating flow in a
cubic lid driven cavity at 1000 and 12,000 Reynolds numbers following which we study the effect of cav-
ity depth on the steady-oscillatory transition Reynolds number in cavities with depth aspect ratio equal
to 1, 2 and 3. Turbulence modeling is performed through large eddy simulation (LES) using the classical
Smagorinsky sub-grid scale model to arrive at an optimum mesh size for all the simulations. The simu-
lation results indicate that the first Hopf bifurcation Reynolds number correlates negatively with the cav-
ity depth which is consistent with the observations from two-dimensional deep cavity flow data available
in the literature. Cubic cavity displays a steady flow field up to a Reynolds number of 2100, a delayed
anti-symmetry breaking oscillatory field at a Reynolds number of 2300, which further gets restored to
a symmetry preserving oscillatory flow field at 2350. Deep cavities on the other hand only attain an
anti-symmetry breaking flow field from a steady flow field upon increase of the Reynolds number in
the range explored. As the present work involved performing a set of time-dependent calculations for
several Reynolds numbers and cavity depths, the parallel performance of the code is evaluated a priori
by running the code on up to 4096 cores. The computational time required for these runs shows a close
to linear speed up over a wide range of processor counts depending on the problem size, which estab-
lishes the feasibility of performing a thorough search process such as the one presently undertaken.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Lattice Boltzmann method (LBM) is evolving as an alternative
method to simulate a variety of fluid flows ranging from low Rey-
nolds number to highly turbulent flows in simple and complex
geometries [7,28]. A few advantages of LBM compared to conven-
tional Navier–Stokes simulations are simple numerical implemen-
tation, absence of solving a pressure Poisson equation at every time
step and ease of parallelization that stems from local collision and
streaming operators. These advantages have made it gain popular-
ity over the past few decades and a variety of applications to blood
flows [27,17,47], microfluidics [46] and multiphase flows [12,31]
can be found in the literature. Fluid flow in a lid driven cavity is
a classical benchmark problem that was studied extensively by
many researchers owing to its simple geometric configuration
and yet showing a variety of flow features such as corner eddies,
bifurcation and transition to turbulence. In the following we pres-
ent a quick review of previous studies on lid driven cavity flows
including experiments, Navier–Stokes equations based and lattice

Boltzmann method based numerical simulations and thereafter
we move onto the goal of the present study.

1.1. Previous studies

Benchmark data on two-dimensional lid driven cavity flow
were first reported by Ghia et al. [14] and Schreiber and Keller
[33]. These results served as classical benchmark data to perform
verification and validation studies of several numerical solvers
[41,10,8,36,37]. Very accurate two-dimensional simulations were
performed by Botella and Peyret [5] using a spectral method. Later,
Hopf bifurcation studies were performed by Goodrich et al. [16],
Shen [35], Abouhamza and Pierre [1] and Auteri et al. [3]. These
studies have shown that in two-dimensional lid driven cavity flows
oscillatory flows can be supported at Reynolds numbers of the or-
der of Oð104Þ, whereas three-dimensional lid driven cavity flow be-
come unstable at Reynolds numbers an order of magnitude lesser
[2]. A review of flow dynamics in the lid driven cavity problem
can be found in Shankar and Deshpande [34] and a quick overview
of linear stability in lid driven cavity flows can be found in Theofilis
[42].

There have been a number of studies on flow in a three-dimen-
sional lid driven cavity [9,15,13,21,32]. Numerical benchmark data
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for a Reynolds number of 1000 in a cubic lid driven cavity were re-
ported by Albensoeder and Kuhlmann [2] using a Chebyshev-collo-
cation in space and Adams–Bashforth backward-Euler scheme in
time. Steady state results were reported for a Reynolds number
of 865 and 1000 respectively by Tuner et al. [43] and Sun et al.
[40] in the code verification and validation studies. Recently, Feld-
man and Gelfgat [11] numerically predicted the onset of oscillatory
instability in a three-dimensional lid driven flow in a cubic cavity
and found that the oscillatory instability of the flow sets in via a
symmetry-breaking sub-critical Hopf bifurcation approximately
at a Reynolds number of 1914. In order to further support these
numerical observations, they have also performed experiments
using particle image velocimetry (PIV) in Liberzon et al. [24].
Through these experiments they were able to obtain a good agree-
ment for the bifurcation Reynolds number and oscillation
frequency.

Coming to numerical studies previously undertaken using
lattice Boltzmann method, Patil et al. [30] simulated flow in two-
dimensional deep lid driven cavities. They showed that the struc-
ture of the primary eddy that gets formed just below the top lid
has a drastic change with the Reynolds number, but it is not much
affected by the depth of the cavity. They conclude that as the cavity
depth increases, the flow-structure near the bottom-wall ap-
proaches the limiting case of creeping flow. Recently, Lin et al.
[26] have performed simulations of two-dimensional deep lid dri-
ven cavities at several aspect ratios using a multi relaxation time
lattice Boltzmann method. They noted that at a Reynolds number
of 7500 steady state results were obtained for a square cavity
whereas unsteady solutions prevailed in the deep cavity flow with
rapid changes in the shape and location of the corner vortices. In
addition, they captured four primary vortices at a cavity depth of
4 using a multi relaxation time model which was not captured
by a single relaxation time model. They conclude that multi relax-
ation time model is more suited for parallel computations when
compared with a single relaxation time model, due to the fact that
the former has intense local computations. This is somewhat sim-
ilar to increasing the problem size per process in a parallel compu-
tation so that the communication time does not supersede, thus
giving rise to a better parallel speed up curves. In another study,
they further analyzed transition in two-dimensional deep lid dri-
ven cavity flows using parallelization obtained through Graphical
Processing Unit (GPU) [25]. By defining an amplitude coefficient
they found that in two-dimensional driven cavity flows first Hopf
bifurcation Reynolds number decreases with the increase of the
cavity depth.

1.2. Present study

The present effort is motivated following the recent work in
identifying the steady-oscillatory transition in three dimensional
cubic cavity [11,24] and in two-dimensional deep lid driven cavi-
ties [26,25]. The effect of side walls on the transition Reynolds
number of flow in a real three dimensional cavity scenario and
the suitability of LBM solver to carry out a range of time dependent
calculations are the driving factors in undertaking the present
work. Therefore, the aim of the present study is to characterize
the onset of oscillatory instability in lid driven cavity flow at sev-
eral cavity depths using a three-dimensional fluid domain. The rest
of the paper is organized as follows. Lattice Boltzmann method
including the governing equations, types of lattice models and
boundary conditions are discussed in Section 2. Validation of the
developed solver, selection of the grid size and lattice type, parallel
performance of the solver and finally the studies on oscillatory
instability on cubic and deep lid driven cavities are presented in
Section 3. Finally the results obtained are discussed and conclu-
sions are made in Section 4.

2. Lattice Boltzmann method

2.1. Governing equations

In LBM, the governing equations are the Boltzmann equations
given as:

@f
@t
þ e � rf ðe;x; tÞ ¼ Xðf Þ ð1Þ

where f ðx; tÞ is particle distribution function that dictates the prob-
ability of finding a particle with a velocity e at a location x ¼ ðx; y; zÞ
at a particular time instant t, and Xðf Þ denotes the collision term.
The single relaxation time Bhatnagar, Gross and Krook (BGK) [4]
model is used as the collision operator, as follows:

Xðf Þ ¼ �1
s
½f ðx; tÞ � f eqðx; tÞ� ð2Þ

where s is the relaxation time taken by the non-equilibrium part of
the particles to reach the equilibrium distribution function state
represented in the equation as f eqðx; tÞ. The relaxation time of the
particles is related to the microscopic fluid viscosity (m) as follows:

s ¼ 1
2
þ 3m

Dt
Dx2 ð3Þ

where Dx and Dt represent the grid size and time step size after a
space–time discretization of the equations. The equilibrium distri-
bution function depends on the local density qðx; tÞ and the velocity
field uðx; tÞ. In LBM, the evolution of the particle distribution func-
tion governed by the Boltzmann equation is discretized on a lattice
type [29]. To derive the lattice Boltzmann equation, the Boltzmann
equation needs to be discretized in the microscopic velocity space
into a finite number of velocity links ea and we have a correspond-
ing discrete set of fa and feq

a . An incompressible counterpart of the
BGK model is proposed for low-Reynolds number 2D plane Poiseu-
ille flow [18] and was applied recently using LES in the lattice Boltz-
mann framework [22,20]. While the standard BGK scheme
computes the fluid density q and momentum qu as the moments
of the distribution function f ðx; tÞ the incompressible model com-
putes the sum of the distribution function dq ¼

PN
i¼0faðx; tÞ that

represents small perturbations about a reference density
q0 ¼ Oð1Þ. The macroscopic density perturbations and the macro-
scopic velocity are then given by,

dqðx; tÞ ¼
Xamax

a¼0

faðx; tÞ ð4Þ

uðx; tÞ ¼ 1
q0

Xamax

a¼0

eafaðx; tÞ ð5Þ

where amax equals the number of lattice sites depending on the lat-
tice model chosen. For example, amax equals 18 for D3Q19 model
and takes a value of 26 for the D3Q27 model. The incompressible
BGK scheme reduces significantly the intensity of numerical pres-
sure wave [22] and was used previously for simulating turbulent
flows using LBM [20,22]. The equilibrium distribution function
f eq
a ðx; tÞ is defined as a function of the macroscopic quantities
q0; dq and u as follows:

f eq
a ¼ xa dqþ q0

ea � u
c2

s
þ ðea � uÞ2

2c4
s
� u � u

2c2
s

 !" #
ð6Þ

Following a standard trapezoidal time–space integration and
change of variables [39,19], we finally obtain the fully-discretized
lattice Boltzmann equation:

faðxþ eaDt; t þ DtÞ � faðx; tÞ ¼ �
1
s

faðx; tÞ � f eq
a ðx; tÞ

� �
ð7Þ
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