Computers & Fluids 92 (2014) 160-171

Contents lists available at ScienceDirect

Computers & Fluids

journal homepage: www.elsevier.com/locate/compfluid

An efficient GPU implementation of cyclic reduction solver
for high-order compressible viscous flow simulations

@ CrossMark

Vahid Esfahanian, Behzad Baghapour *, Mohammad Torabzadeh, Hossain Chizari

School of Mechanical Engineering, Engineering College, University of Tehran, North Kargar Ave., P.O. Box 14395-1335, Tehran, Iran

ARTICLE INFO

Article history:

Received 19 March 2012

Received in revised form 8 September 2013
Accepted 9 December 2013

Available online 24 December 2013

Keywords:

Cyclic reduction

GPU computing

High-order compact finite-difference
scheme

Compressible viscous flow

ABSTRACT

In this paper, the performance of the Cyclic Reduction (CR) algorithm for solving tridiagonal systems is
improved with the aid of efficient global memory transactions on Graphics Processing Units (GPU). To
achieve maximum memory throughput with a lower computational runtime, two different Sort algo-
rithms are introduced for reordering the initial system of equations: direct and step-by-step. It is shown
that the latter method is well-fitted to modern GPUs and achieves speedup of up to 3.47x in single pre-
cision and 2.1x in double precision compared to the CPU Thomas algorithm. By benefiting from the new
global memory implementation, the CR solver could run 2x-100x faster compared to previous works on
parallel tridiagonal solvers. The CR solver is also applied to 2D & 3D compressible viscous flow simula-
tions using the high-order compact finite-difference scheme. In this matter, the procedure of filtering,
primitive variables, and flux derivative calculations are carried out by using the parallel tridiagonal solver
on the GPU device. The GPU-accelerated calculations achieve speedups between 1.9x-15.2x in 2D and
6.4x-20.3x in 3D simulations for different grid sizes compared to CPU computations. The computations
are performed on the NVIDIA GTX480 GPU. The obtained results are compared to those achieved on a sin-

gle core of Intel Core 2 Duo (2.7 GHz, 2 MB cache) in terms of calculation runtime.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past few years, the GPU has evolved into a processor
with high performance of floating-point arithmetic operation and
wide memory bandwidth. Massive hardware multi-threading by
GPUs has experienced an order of magnitude more performance
over a single CPU for CFD applications [1-4].

Solving tridiagonal systems is nearly a primary task in many
CFD applications. It serves as a kernel for famous numerical algo-
rithms like Alternating Direct Implicit (ADI) and Line Successive
Over Relaxation (LSOR), which are required for solving the linear
system of equations and preconditioners. The conventional meth-
od to solve tridiagonal systems is the sequential Thomas algorithm,
which is based on Gaussian elimination. Two alternative parallel
algorithms for the solution of tridiagonal equation systems are
Cyclic Reduction (CR) [5] and Recursive Doubling (RD) [6]. These
parallel algorithms have led many researchers to present various
GPU implementations to boost computational performance.

Zhang et al. [7] first discussed the applicability of these algo-
rithms on modern GPUs and suggested a hybrid technique

* Corresponding author. Tel./fax: +98 21 88020741.
E-mail addresses: evahid@ut.ac.ir (V. Esfahanian), baghapor@ut.ac.ir (B. Baghapour),
torabzadeh@ut.ac.ir (M. Torabzadeh), hossainchizari@yahoo.com (H. Chizari).

0045-7930/$ - see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compfluid.2013.12.011

amongst the Thomas algorithm, CR, Parallel CR (PCR) and RD with
a comprehensive performance examination of each algorithm.
They concluded that CR suffers from shared memory bank conflicts
and poor thread utilization. Goddeke et al. [8] reported matrix size
limitation due to shared memory usage. They declared that per-
forming multiple transfers to global memory would significantly
reduce the performance of the algorithm. Moreover, Davidson
et al.[9] proposed a multi-stage method for solving large tridiago-
nal systems. Their GPU implementation was much slower than the
CPU Thomas algorithm. Davidson and Owens [10] presented a reg-
ister packing optimization method for improving the scalar tridiag-
onal CR solver. This method enabled them to solve larger systems
and achieve higher performance compared to the results achieved
by [7,8]. Egloff [11] presented a PCR implementation for solving
large tridiagonal matrices over finite difference PDE solvers and re-
ported 60% performance degradation in the case of using global
memory. Kim et al. [12] proposed a hybrid of the tiled PCR and
Thomas algorithms to overcome the size limitation of shared mem-
ory without causing extra data loads.

In GPU architecture, the fast on-chip shared memory has two
orders of magnitude lower latency than global memory, however,
it confronts memory limitation in large system of equations. This
has led Davidson et al. [9] and Kim et al. [12] to split the initial
large system into smaller ones on global memory, pass each seg-
ment into the local shared memory and then solve each piece of


http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2013.12.011&domain=pdf
http://dx.doi.org/10.1016/j.compfluid.2013.12.011
mailto:evahid@ut.ac.ir
mailto:baghapor@ut.ac.ir
mailto:torabzadeh@ut.ac.ir
mailto:hossainchizari@yahoo.com
http://dx.doi.org/10.1016/j.compfluid.2013.12.011
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid

V. Esfahanian et al. / Computers & Fluids 92 (2014) 160-171 161

the problem by the Stream Multiprocessors (SM) of the GPU de-
vice. However, their proposed algorithm did not reach a consider-
able speedup compared to the CPU Thomas algorithm.

A recent research on high-order simulation of fluid flow on GPU
was carried out in [13]. They simulated the vortex advection on 3D
Cartesian grids using sixth-order compact and tenth-order filtering
scheme. On the GPU platform, the required flux derivatives for
compact finite difference was obtained by inversion of the tridiag-
onal system once at the beginning of the simulation. Although this
procedure results in faster computations, it suffers from lack of
efficiency especially in large matrix sizes. This is related to the
large share of memory allocation and explicit matrix inversion in
the total runtime procedure. They concluded that employing an
efficient parallel algorithm for solving tridiagonal systems has an
important role in high-order numerical simulations.

In the present study, an efficient cyclic reduction solver that can
be applied to CFD codes is developed. The current work uses a glo-
bal memory-based algorithm which matches well with GPU archi-
tecture by proper thread utilization, computing intensive
operations, and coalesced memory access in order to overcome
some of the difficulties that existed in the previous hybrid and
shared-memory-bound methods. This paper starts by briefly pre-
senting the CR algorithm. Then, the GPU implementation of the
CR algorithm is explained and the performance of the tridiagonal
solver is analysed. Finally, the compressible viscous flow simula-
tions around the NACA 0012 airfoil and the circular cylinder are
considered to demonstrate the performance of the solver.

2. The cyclic reduction algorithm

CR consists of two phases: forward reduction and backward
substitution. The algorithm flowchart is shown in Fig. 1.

1. Forward reduction

This phase is based on a divide and conquer algorithm. It means
that the initial N x N matrix splits into two independent tridiag-
onal matrices for two sets of odd and even unknowns in the first
step. The two smaller matrices can be split again in the same
way into two submatrices. For the final step, submatrices of
two unknowns are produced. At this point, the solution of
odd-indexed equations is trivial. The CR algorithm consists of
log,N steps for a N x N tridiagonal matrix. The diagonals (a, b,
and c) and right-hand-side (d) elements in each step of the algo-
rithm can be obtained by the following formulas.

— Initialize diagonals and RHS,
/ Set the number of equations

< Step=1

Update odd-indexed equations ‘

v
YES Sort odd-indexed equations ‘

_| Forward I

Reduction / Step = Step+1

:::::i:::S:t:e:E:{OQZ (Number of eqt];tiir(}ﬁ:Si)::ﬁ:::::::;

NO
v
‘ Solve odd-indexed equations ‘
[~ Backward . L . ‘
Substitution ‘ Solve even-indexed equations |

Fig. 1. CR algorithm flowchart.

step+1 __ step step 1,step step 1,step
d; =di " —dTk T —digk;
step+1 __ pstep tep 1,Step step 1,step
b; =b" =Tk — a7k,
step+1 __ _ stepp,step
G =Gk,
ste
a§tep+1 _ _astepk P
i i-1™1
step
kstep o ai
1 - bstep
i—1
step
kSIEp _ Cl
2 bstep
i+1

2. Backward substitution
The backward substitution phase determines the other half of
the unknowns using the previously solved values. The following
equation determines each even-indexed unknown (x;) by
substituting previously solved odd-indexed values (x;_; and
Xis1).

X = (di — aiXi-1 — CiXi1)/bi (2)

The cyclic reduction requires 17N arithmetic operations while
the Thomas algorithm needs 8N — 1 operations to solve a tridiago-
nal system of size N. Although CR costs ¥ times more than the Tho-
mas algorithm in terms of computational operations for large
tridiagonal systems, the present study indicates that the proposed
CR solver runs faster than the Thomas solver on GPU devices.

3. GPU implementation of the CR algorithm

The proposed CR algorithms are implemented via Compute Uni-
fied Device Architecture CUDA [14], tested on NVIDIA GTX480 GPU
and compared to Intel Core 2 Duo (2.7 GHz, 2 MB cache) CPU.

3.1. CUDA architecture and GPU memory hierarchy

In CUDA architecture, a kernel execution is distributed among
an array of parallel threads, which are grouped in thread blocks.
The thread blocks are then mapped to the stream multiprocessors
(SM) of the GPU device [14]. The parallel threads can access data
from a variety of memory resources during the kernel execution.
Each thread can have low latency access to 48 KB of shared mem-
ory for inter-thread communication within a thread block. All
threads of the grid have access to the large global memory with
high transaction latency. The read-only memories visible to all
threads are constant and texture memory spaces [14].

Each SM contains on-chip register memory resources, which are
allocated to active threads of the kernel. The number of registers
that are available per multiprocessor is fixed. The extra register
memory consumption limits the number of threads that can be
simultaneously mapped to the GPU multiprocessor during kernel
execution, which results in memory latency [15]. Local memory
is exploited when a kernel runs out of SM register memory re-
sources. In case of high register pressure, the extra amount of reg-
isters is spilled in the private local memory of the thread [15].
However, the data access to off-chip local memory reduces the per-
formance due to high latency and low bandwidth [16].

The NVIDIA GTX 480 used in this research is built upon the
GF100 Fermi architecture. The 1536 MB of frame buffer memory
runs through a 384-bit bus and delivers 177.4 GB/s of memory
bandwidth. The GPU consists of 4 Graphics Processing Clusters
(GPC) that house the 480 CUDA cores, 60 Texture units, 15 Stream-
ing Multiprocessors (SM), and 48 Render Outputs (ROP). Every SM
core in each GPC is comprised of 32 CUDA cores, with 48/16 KB of
shared memory, 16/48 KB of L1, 4 texture units, and 1 PolyMorph
Engine.



Download English Version:

https://daneshyari.com/en/article/761873

Download Persian Version:

https://daneshyari.com/article/761873

Daneshyari.com


https://daneshyari.com/en/article/761873
https://daneshyari.com/article/761873
https://daneshyari.com

