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a b s t r a c t

Smoothed particle hydrodynamics (SPH), as a Lagrangian meshfree particle method, has been applied to
modeling viscous liquid drop with surface tension and wetting dynamics. In the SPH model, the van der
Waals (vdW) equation of state is usually used to describe the gas-to-liquid phase transition similar to
that of a real fluid. However, the attractive forces between SPH particles originated from the cohesive
pressure of the vdW equation of state can lead to tensile instability, which is associated with unphysical
phenomena such as particle clustering or blowing away. This paper presents an improved SPH method for
modeling viscous liquid drop. The inherent tensile instability in SPH is removed by using a hyperbolic-
shaped kernel function which possesses non-negative second derivatives. A single-step approximation
for heat flux is used in modeling viscous liquid drop with smoother temperature field. The formations
of viscous liquid drops, both in 2D and 3D, are tested and it clearly demonstrates that the tensile insta-
bility can be effectively removed. The improved SPH method is also used to model two other numerical
examples including the oscillation and binary collision of liquid drops without tensile instability.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Liquid drop dynamics has been investigated for many years as
liquid drops exist widely in nature and industrial production, such
as the formation of raindrop, ink-jet printing, fuel injection atom-
ization, droplet-based net-form manufacturing, and many others
[1]. Liquid drops were firstly studied quantitatively by Rayleigh
[2], and he derived the relation between the period of drop vibra-
tion and the surface tension. In the past few decades, Liquid drops
have been experimentally investigated and numerical modeled by
many researchers. For example, in order to study the rheological
properties of liquid drop surfaces, Apfel et al. [3] studied the free
oscillations and large deformations of water drops in microgravity.
Willis and Orme [1,4] experimentally investigated the viscous bin-
ary droplet collisions in a vacuum environment. They quantita-
tively studied the oscillation cycle of droplets and found that the
time period of oblate oscillation is relatively not affected by Weber
number and viscosity and that the time period of prolate oscilla-
tion is affected by the Reynolds number. In order to understand
the impact of a liquid drop into a dry solid surface, Schroll et al.
[5] use an axisymmetric volume-of-fluid (VOF) method to simulate
the impact at reduced ambient pressure. Bernel et al. [6] experi-
mentally and numerically investigated the drop formation by vor-
tical flows in microgravity. Sun et al. [7] studied the deformation

and mass transfer for binary droplet collisions using the moving
particle semi-implicit method.

The formation and deformation of liquid drops are associated
with evolutionary morphology with changing free surfaces and
moving interfaces, which present big challenges to numerical sim-
ulations. Over the past decades, interfacial flow simulation has
been a formidable topic in computational fluid dynamics and com-
putational physics. In order to deal with free surface and moving
interface evolution, different numerical techniques have been pro-
posed to track or capture free surfaces or moving interfaces. Con-
sidering the fact that both fluids and solids are composed of
particles, the physics related liquid drop dynamics is closely re-
lated to the inter particle and intra molecular hydrodynamics
interactions of the concerned multiple phase system. Therefore
Lagrangian meshfree particle methods can be attractive in model-
ing liquid drops.

Smoothed particle hydrodynamics (SPH) is a typical meshfree
particle method. It was first introduced by Lucy [8] and Gingold
and Monaghan [9] for solving astrophysical problems, and later ex-
tended to many other problems in engineering and sciences [10–
13]. Nugent and Posch [14] firstly studied liquid drops and surface
tension for van der Waals (vdW) fluids using SPH as the cohesive
pressure part in the vdW equation of state can be used to model
surface tension. Tartakovsky and Meakin [15] also developed an
SPH method for modeling liquid drop dynamics with surface ten-
sion and contact angles for van der Waals fluids using an inter-par-
ticle interaction force. Xu et al. [16] developed a diffuse-interface

0045-7930/$ - see front matter � 2014 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compfluid.2014.01.002

⇑ Corresponding author. Tel.: +86 10 82545792; fax: +86 10 62541284.
E-mail address: yangxf@imech.ac.cn (X. Yang).

Computers & Fluids 92 (2014) 199–208

Contents lists available at ScienceDirect

Computers & Fluids

journal homepage: www.elsevier .com/ locate /compfluid

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2014.01.002&domain=pdf
http://dx.doi.org/10.1016/j.compfluid.2014.01.002
mailto:yangxf@imech.ac.cn
http://dx.doi.org/10.1016/j.compfluid.2014.01.002
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid


SPH model which can also simulating vdW liquid–vapor systems.
By introducing a surface tension model in SPH, Zhang [17] simu-
lated binary collisions of liquid drops in two and three dimensions
successfully. However, for higher Reynolds number and higher
Weber number, the model has to be improved. Viscous droplet
has also been studied using SPH method by many other research-
ers such as Jiang et al. [18] and Meleán et al. [19,20].

It is known that SPH suffers from tensile instability when
modeling elastic solids and viscous fluids. The tensile instability
is the situation in which when particles are under tensile stress
state, the motion of the particle becomes unstable. It could result
in particle clustering or particle blowing away in SPH computa-
tion. Swegle et al. [21,22] firstly studied the tensile instability
and proposed a criterion which states that the instability de-
pends on the sign of the multiplication of the stress and the sec-
ond derivative of the kernel function. In SPH modeling viscous
liquid drops, tensile instability also exist. Meleán et al. [19,20]
investigated viscous liquid drops for vdW fluids, and discussed
the tensile instability effects. In order to remove the tensile
instability of SPH in modeling vdW drops, they applied the arti-
ficial stress model which was originally proposed by Monaghan
[23] and is associated with an artificial viscous force and energy
generation term. It is reported that with optimal coefficients, the
artificial viscous stress model can remove tensile instability with
sufficiently smoothed density profile.

This paper presents an improved SPH method for modeling vis-
cous liquid drop without tensile instability using a hyperbolic-
shaped kernel function which possesses non-negative second
derivatives. The paper is organized as follows. In the next section,
SPH method for describing van der Waals fluid shall be briefly ad-
dressed. In Section 3, the SPH tensile instability shall be discussed
and a hyperbolic-shaped kernel function shall be presented to re-
move tensile instability for SPH modeling viscous liquid drops. In
Section 4, three classes of numerical examples shall be provided.
The first class involves liquid drop formation both in 2D and 3D,
the second class involves oscillation of liquid drops, and the third
class involves head-on and off-center binary collisions of two
vdW liquid drops. The paper concludes in Section 5 with some
discussions.

2. SPH method for van der Waals fluid

In general, SPH is a numerical method for solving partial differ-
ential equations of continuum dynamics by replacing the contin-
uum with a set of particles. In this section, we will briefly
describe the governing equations of van der Waals (vdW) fluid
and the corresponding SPH formulations.

In vdW flow, the effect of heat conduction is very important, so
an internal energy equation should be considered. The general
equations governing the motion of heat conducting and viscous
fluid can be written as

dq
dt
¼ �qr � u ð1Þ

du
dt
¼ 1

q
r � S þ g ð2Þ

de
dt
¼ 1

q
S : ru� 1

q
r � q ð3Þ

where t is time instant, q is the density, u is the velocity, S is the
stress tensor, g is the body force per unit mass, e is the specific
internal energy, and q is the heat flux vector.

The stress tensor S is written as

S ¼ �pI þ r ð4Þ

where p is the internal pressure, I is the unit tensor, and r is the vis-
cous stress tensor given by

r ¼ gðruþ urÞ þ f� 2
d
g

� �
ðr � uÞI ð5Þ

where g and f is the coefficients of shear and bulk viscosity, respec-
tively. The parameter d is the spatial dimension, with d = 2 and 3 for
two- and three-space dimensions, respectively [20,24].

The heat flux vector is written as

q ¼ �jrT ð6Þ

where j is the coefficient of thermal conductivity and T is the fluid
temperature.

Eqs. (1)–(3) are closed by the mechanical and caloric equations
of state for the pressure and the internal energy, respectively. For
vdW fluid, the governing equations are closed by

p ¼ q�kT

1� q�b
� �aq2 ð7Þ

and

e ¼ �kT � �aq ð8Þ

where �k ¼ kB=m, �a ¼ a=m2, and �b ¼ b=m, here kB is the Boltzmann’s
constant, m is the particle mass, a is the cohesive action responsible
for the short-range attractive forces between neighboring mole-
cules, and b is a constant parameter due to the finite size of the mol-
ecules. The cohesive part of the pressure in Eq. (7) gives rise to an
attractive, central force between particles with an interaction range
which is assumed to exceed that of all other smoothed forces
appearing in Eq. (10). With this assumption, stable drops can be
formed [20].

In SPH method, a continuous field is represented by a set of par-
ticles. The particles carry physical properties such as mass m, den-
sity q, velocity u, and energy e. The governing equations are solved
on particles and they can be written in SPH as [14,19,20]

dqa

dt
¼
X

b

mbðua � ubÞ � raWab ð9Þ

dua

dt
¼
X

b

mb
Sa

q2
a
þ Sb

q2
b

� �
� raWab þ ga ð10Þ

dea

dt
¼ 1

2

X
b

mb
Sa

q2
a
þ Sb

q2
b

� �

: ðua � ubÞraWab �
X

b

mb
qa

q2
a
þ qb

q2
b

� �
� raWab ð11Þ

where subscripts a and b denote particle indexes, Wab = W(rb � rb,
h) is a kernel function (also referred to as smoothing function, or
simplified as kernel), h is a smoothing length which determines
the range of the interaction of particles,raWab denotes the gradient
of the kernel function taken with respect to the coordinate of parti-
cle a. The summation is taken over all the neighboring particles
determined by the smoothing length. Note that the spatial deriva-
tive in the governing equations has been transformed to the deriv-
ative of the kernel function which can be obtained analytically. The
kernel function should satisfy some conditions which will be intro-
duced in the following section.

In SPH, an alternative method to approximate the density of a
particle is

qa ¼
X

b

mbWab ð12Þ

There is a disadvantage that the density of the particles near free
surface obtained by Eq. (12) always less than the reasonable value,
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