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a b s t r a c t

A previously developed density distribution-based structural topology optimization algorithm coupled
with a Computational Fluid Dynamics (CFD) solver for aerodynamic force predictions is extended to solve
large-scale problems to reveal inner structural details of a wing wholly rather than some specific regions.
Resorting to an iterative conjugate gradient algorithm for the solution of the structural equilibrium
equations needed at each step of the topology optimizations allowed the solution of larger size problems,
which could not be handled previously with a direct equation solver. Both the topology optimization and
CFD codes are parallelized to obtain faster solutions. Because of the complexity of the computed aerody-
namic loads, a case study involving optimization of the inner structure of the wing of an unmanned aerial
vehicle (UAV) led to topologies, which could not be obtained by intuition alone. Post-processing features
specifically tailored for visualizing computed topologies proved to be good design tools in the hands of
designers for identifying complex structural components.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Determining the right topology for a load bearing structure, i.e.,
finding an optimum distribution of materials and placement of
structural components over a structure are very important in terms
of efficiency and cost. The traditional approaches of structural
topology design were based on the experience, intuition and crea-
tivity of designers. In most cases, topology of existing structures
were emulated or improvised. However, for complex structures,
there is a need for more systematic approaches. When, a system-
atic optimization method is used during the conceptual design of
a structure, major savings may be achieved from the amount of
material and weight. Especially in automotive and aerospace
industries, since there is always a need for reduced weight and sav-
ings in materials for efficiency and cost, the optimization is even
more important. Because of that, the use of topology optimization
methods has increased during the recent years. Since they offer
many more useful alternatives in the hands of designers, intense
research is continuing in this area. With the tools developed, the
designers can use their experience and creativity for testing their
new ideas.

Today, structural topology optimizations are mostly done using
the finite element method because of its generality. For optimiza-
tion process, there are two broad approaches: (1) Microstructural
approach and (2) Macrostructural approach. A good review of these
two approaches is given by Eschenauer ve Olhoff [1].

In this paper, we use the microstructural approach because of its
versatility. This approach is also known as materials or density dis-
tribution method in the literature. In this method, the geometry of
the optimum topology evolves by systematically computing a
non-dimensional material density qe in each finite element, which
varies from zero to one to match a given volume reduction (volume
fraction) of an initially defined design space. The element struc-
tural stiffness matrix denoted as ke

ij is assumed to be linearly pro-
portional to density. The density represents the volume fraction
of the element. Thus, as density approaches to zero, so does the
element stiffness, as a result an empty region is formed. Con-
versely, in regions where the density becomes one, the full stiffness
of the material is fully reached, thus a fully solid region is formed.
In regions where density varies between zero and one, a non-
homogeneous region is formed. To enforce formation of distinct
empty and solid regions, a penalty constant n greater than one is
introduced to the optimization scheme as a power of density as
in qn

e for magnification of differences between low and high values
of density.

The density distribution method was proposed for the first time
by Bendsoe and Kikuchi [2] as a topology optimization method. A
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treatise on the widespread applications of the method is due to
Bendsoe and Sigmund [3]. An interesting feature of the density dis-
tribution method is that, while it brings out the topology of the
structure in macroscopic level, it also provides the distribution of
the material density in microscopic level. Thus, it suggests a design
for gradation of the material properties for a penalty constant with
value of one, which may be important in some complex structures.
While this is beyond the scope of our present study, it brings out
the possibility for designing exotic composite materials as well.
For slender (thin and long) structures, where the areas covered
are large compared to the volume of the material, typically grid-
and truss-type structures evolve with this method with penalty
constants above one. One disadvantage of this method is that, since
solid and empty parts are formed in a pixel format, there is a need
for very dense meshes, which means more computation time and
more memory are needed. Another disadvantage is the need to
solve for large size structural equilibrium equations at each step
of optimization, which are nearly ill-conditioned since the density
values vary between zero and one. This requires preconditioning of
the structural stiffness matrix for correct solution of the equations.
Moreover, for real type applications, parallelization is a must for
computing time as well as memory requirements.

Earlier parallel applications of topology optimization are due to
Borvall and Petersson [4] and Vegamanti and Lawrence [5], who
have used domain decomposition method for large-scale applica-
tions with good parallel performances obtained. Their applications
were restricted to simple loading structures with unidimensional
loads. Since weight reduction is of importance for aerial vehicles,
topology optimization provides many benefits in the design of air-
craft wings. The problem has been studied by several researchers
in the past. For example, Rao, et al. [6] studied a wing case by con-
sidering both aerodynamic and engine loads. Their results showed
that complex topologies might be obtained, when no constraints
are introduced for a priori placement of spars and outer shells.
They were able to obtain more traditional topologies when con-
straints were introduced, such as placing spars at different loca-
tions a priori. However, the aerodynamic loads used were based
on a simplified lattice method, with significant deviations from
more accurate realistic CFD solutions leading to inaccurate pres-
sure distributions over the wing. Especially the pressures com-
puted at leading and trailing edges were in error, which affect
the results rather significantly. Other applications of the density
distribution method to optimization of aircraft wings may be
found in Refs. [7,8]. A good review of aeroelastic optimization
can be found in Guruswamy and Obayashi [9].

2. Present work

Our emphasis here has been on coupling CFD solutions with the
structural optimization problem to study the impact of aerody-
namic loads in shaping the inner wing topologies. To achieve this
we resorted to parallel computing as a tool to allow us to solve
large-scale problems. Because the aerodynamic loading structure
is rather complex and multidimensional, the optimization of wing
structure is challenging. To do that we have chosen to utilize real-
istic CFD solutions under operating conditions and transfer the CFD
pressures computed on wing surfaces to the structural mesh accu-
rately and conveniently as aerodynamic forces. In a recent work,
we have developed a parallelized structural topology optimization
code to optimize the rib-structures of an aircraft wing under con-
ventional fixed spar location placement approach under aerody-
namic loads [10], which may be the preferred approach for
conventional aircraft design considering manufacturing restric-
tions. Unlike in the present work, whole inner structural details
of a wing have been optimized to reveal unconventional rib and

spar shapes for the first time. For optimizations, the minimum
compliance energy method [3] was used. This approach, starting
with a solid wing profile determined an optimum distribution of
the ribs inside the wing surface based on the choice of spars
extending along the wingspan. The aerodynamic loads, computed
under extreme flight conditions were delivered from the parallel-
ized Computational Fluid Dynamics (CFD) module of our proprie-
tary software CAEeda™ [11] to the surface of the wing. The
optimization module, which is also parallelized, determined the
optimum topology for the ribs under the aerodynamic loads re-
ceived. For transfer of pressure forces from the CFD module to
the topology optimizer module, the code- and mesh-coupling
module SINeda of CAEeda™ was used [12].

In the earlier version of our topology optimizer [10], we used
an open access direct equation solver, MUMPS [13], and its
sparse matrix storage and parallelization scheme for solving the
system of equations. This scheme proved to give satisfactory re-
sults for moderate size problems only, because as the size of the
problem increased, the scalability was lost and the memory lim-
its were reached for storage of the coefficient matrix. This re-
stricted the size of the problem to be solved. As a result, the
applications were restricted to moderate scale problems. To cir-
cumvent this, we have explored other options and as our parallel
solver we have decided to use PETSc library (The Portable Exten-
sible Toolkit for Scientific Computations) developed at Argonne
National Laboratory [14]. PETSc is particularly rich in the choice
of equation solvers and has several parallel iterative solvers in its
library, among which we have chosen the symmetric conjugate
gradient method. As matrix pre-conditioner, the block-Jacobi meth-
od was used, which is a diagonal-matrix preconditioner in block
form suitable for parallel computing. This allowed us to solve
large-scale three-dimensional problems, which we were not pre-
viously able to.

As an example case, topology optimization of a hypothetical
unmanned aerial vehicle (UAV) is considered. Since weight is of ut-
most importance for especially High Altitude Long Endurance
(HALE) type or mini and micro UAVs, the selection of minimum
weight optimum topology is very crucial. Especially for mini and
micro UAVs, manufacturing of complex geometries is affordable
and less difficult, because of the relative ease of shaping and man-
ufacturing of parts composed of advanced materials. Removing the
manufacturing constraints in topology optimization of such
vehicles here resulted with highly complex, yet interesting topolo-
gies, which could not be predicted by intuition alone, as will be
demonstrated in Section 6.

3. Formulation

Since for the problem at hand, both flow analysis and topology
optimizations are needed, we briefly describe the formulations
used for both here.

3.1. Formulation of the flow analysis problem

For topology optimization of full three-dimensional wings, our
previously developed CFD code FAPeda™ [15,16] was used to
calculate the aerodynamic loads. This code is based on an unstruc-
tured cell-centered tetrahedral finite volume formulation. It solves
compressible full Navier–Stokes equations with Spalart–Allmaras
turbulence model [17]. For time-dependent calculations, backward
Euler implicit time-integration scheme is used. Parallelization is
based on a domain-decomposition method with one-cell overlaps
for information exchange between subdomains [15]. For low Mach
number and nearly-incompressible flows (M < 0.3), an artificial
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