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a b s t r a c t

Parallel implementation of the Vortex-in-Cell (VIC) method for 3D flow on many graphics cards was pre-
sented. As test problems it was chosen the leapfrogging and head-on collision of two vortex rings for
which a well documented visualization exists in the literature. Our aim was to show the great potential
of the VIC method for solution of 3D flow problems and that it is very well suited for parallel
computation.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Numerical solution of the 3D Navier – Stokes equations for high
Reynolds number, using any method, is a very time consuming
process. Recently there is not much increase in the computational
power of a single processor. Instead we are forced to use multicore
architectures and parallel computation. But to take advantage of
their potential one needs to use proper numerical algorithms.
One of the multiprocessor hardware that can be efficiently used
in scientific computations is the graphics processing unit (GPU).
It is built of hundreds of simple streaming processors which alto-
gether give a great computational power. GPUs are relatively cheap
and commonly available.

Our first implementation used only one graphics card for
computation. We were able to use the computational grid of
128 � 128 � 128 nodes (on a newer GPU we were able to fit com-
putational grid of 224 � 224 � 224 nodes). Our results can be
found in [11]. Very quickly we found the limitation of the RAM
memory of a single GPU. We were forced to use many graphics
cards. For communication we used MPI library.

As a numerical method we chose the 3D Vortex-in-Cell (VIC)
method that become more and more important method in numer-
ical investigation of the fluid dynamics phenomena [4–6,20,18]. In
this method particles carry information about vorticity. It is well
known that the velocity may be calculated from the vorticity distri-
bution. Next the vortex particles are displaced according to local
velocity field. Particles intensity is then interpolated back to the

grid nodes. To simulate the effect of the viscosity the viscous split-
ting was used and the diffusion equation was solved in each time
step.

The VIC method is very well suited for parallel computation
[11,10,19,7]. The displacement and redistribution processes, which
have to be done at each time step, have a local character and the
computations for each particle can be done independently. So the
whole set of particles can be divided into independent groups
and operations over these groups can be done concurrently.

In the paper it was presented the numerical results of the inter-
action between two vortex rings. The phenomena of leapfrogging
and head-on collision of vortex rings were simulated. Experimental
results for both cases are well documented in the literature [12,13].

The structure of the article is as follows: in the next section a
short description of the VIC method is given, in Section 3 it was
presented the numerical test cases and its results and the last sec-
tion are closing remarks.

2. Equations of the motion and description of the vortex
particle method

Equations of incompressible and viscous fluid motion have the
following form:

@u
@t
þ ðu � rÞu ¼ � 1

q
rpþ mDu ð1Þ

r � u ¼ 0 ð2Þ

where u = (u,v,w) is velocity vector, q is fluid density, p is pressure,
m is kinematic viscosity. Eq. (1) can be transformed to the Helmholtz
equation for vorticity evolution [21]:
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@x
@t
þ ðu � rÞx ¼ ðx � rÞuþ mDx ð3Þ

where x =r� u.
Generally in all vortex particle methods the viscous splitting

algorithm is used [8]. The solution is obtained in two steps: first,
the inviscid - Euler equation is solved.

@x
@t
þ ðu � rÞx ¼ ðx � rÞu ð4Þ

Next, the viscosity effect is simulated by solving the diffusion
equation

@x
@t
¼ mDx ð5Þ

xðx;0Þ ¼ xI ð6Þ

where xI is vorticity distribution obtained after inviscid step.
For the solution of Eqs. (5) and (6) one can use any suitable

method like the Particle Strength Exchange (PSE) method [4] or
the Finite Difference method (FDM). Due to the fact that we did
the distribution of the particles intensities in each time step to
the grid nodes and the positions of the particles are fixed, the most
suitable method for that case, seems to be the FDM method with
semi-implicit Crank–Nicholson scheme that is of the order
ðOððDtÞ2 þ ðDxiÞ2ÞÞ.

The mth component (m = 1,2,3) of the vorticity vector was
approximated by

xnþ1
m �xn

m

Dt
¼ 1

2
Lnþ1xm þ

1
2

Lnxm ð7Þ

where

Lnþ1xm ¼ m Kixnþ1
m þKjxnþ1

m þKkxnþ1
m

� �
ð8Þ

and

Kix ¼
xiþ1;j;k � 2xi;j;k þxi�1;j;k

Dx2
i

; ð9Þ

where index n related to time level tn = nDt and (i, j,k) enumerates
the grid nodes in x1, x2, x3 directions respectively. The resulting
algebraic systems were solved on GPU by the conjugate-gradient
method.

In inviscid flow (4), according to the third Helmholtz theorem
[21], vorticity lines move as the material fluid particles. Thus the
movement of the vortex particles can be described by the infinite
set of ordinary differential equations:

dxp

dt
¼ uðxp; tÞ; xð0;aÞ ¼ a ð10Þ

where a = (a1,a2,a3) means the Lagrange coordinates of fluid parti-
cles. Solution of Eq. (10) gives the particle-trajectory mapping
Uð�; tÞ : R3 ! R3;a! Uða; tÞ ¼ x 2 R3 that is one-to-one and onto.
Incompressibility implies that det(raU(a, t)) = 1

The velocity can be expressed through vorticity distribution
using the Biot–Savart law

uðx; tÞ ¼
Z

Kðx� x0Þxðx0; tÞdx0 ¼ ðK�xÞðx; tÞ ð11Þ

where ⁄ denotes convolution and K is a 3 � 3 matrix kernel

KðxÞ ¼ 1
4p

1

jxj3

0 x3 �x2

�x3 0 x1

x2 �x1 0

0
B@

1
CA; jxj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2 þ x2

3

q

Eq. (11) are the fundamental formulas for direct vorticity meth-
ods [14]. By covering the domain of the flow with a numerical

mesh (Nx � Ny � Nz) with equidistant spacing h, the ith component
of the intensity vector particle ai is defined by the expression:

ai ¼
Z

Vp

xiðx1; x2; x3Þdx � h3xiðxpÞ; xp 2 Vp; jVpj ¼ h3 ð12Þ

where Vp is the volume of the cell with index p. The velocity field is
found by summing over all of the particles

dxi

dt
¼ uðxi; tÞ ¼

XNp

p¼1

Kðxi � xpÞapðtÞ ð13Þ

dai

dt
¼ aiðtÞ � rð Þuðxi; tÞ ð14Þ

The disadvantage of the direct vortex particle method given by for-
mula (13) is that the method is very computationally time consum-
ing. It stems from the fact that one should take into account all of
the mutual interactions between particles that are in the flow. In
practical calculation one should also introduce regularization in
the formulas (13) removing the singularity of the kernel K
[17,15,14]. To overcome this difficulty we replaced the Biot–Savart
law for velocity calculation with the grid method.

From incompressibility (2) stems the existence of the vector po-
tential A, such that:

u ¼ r� A ð15Þ

The vector potential A defines the velocity field with accuracy to
some potential field r/. Adding A +r/ we do not change the left
side of (15). It is convenient to assume that divA = 0. The vorticity
is related to A as follows

r�r� A ¼ x ¼ rðr � AÞ � DA ð16Þ

So assuming that r � A = 0 the vector potential can be obtained by
solving three Poisson equations

DAi ¼ �xi; i ¼ 1;2;3 ð17Þ

with periodic boundary conditions in each direction.
The Poisson equation can be solved effectively using the numer-

ical grid and finite difference method. Grid solution (17) permits
for calculation of the velocity by formula (15).

Subsequently the velocity from the mesh nodes is interpolated
onto the particles positions. Such an approach significantly acceler-
ates (�1000 times quicker [6]) the calculations. Algebraic systems
obtained from discretisation of the Poisson Eq. (17) were solved by
the Multigrid method. The system of Eq. (13) was solved by the
Runge–Kutta method of the 4th order. After solution of the Eq.
(13) the intensity of the particles was redistributed onto the grid
nodes.

We did the redistribution of the intensities of particles onto grid
nodes in each time step, before the solution of the Poisson Eq. (17).

It was done using an interpolation:

xj ¼
X

p

~apn
u

xj � ~xp

h

� �
h�3 ð18Þ

where j is the index of the numerical mesh node, p is the index of a
particle.

Let us assume that x 2 R. In this work, we used the following
interpolation kernel [4]

uðxÞ ¼
ð2� 5x2 þ 3jxj3Þ=2 if 0 6 jxj 6 1

ð2� jxjÞ2ð1� jxjÞ=2 if 1 6 jxj 6 2
0 if 2 6 jxj

8><
>: ð19Þ

For the 3D case, u = u(x)u(y)u(z). The u satisfies the following mo-
ment condition [4]:
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