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a b s t r a c t

In this paper, we present a novel scheme for modeling the hypersonic atmospheric entry of large vehicles
with an ablative thermal protection system. The Favre-averaged thermochemical nonequilibrium
Navier–Stokes equations with Spalart–Allmaras turbulence closure, thermodynamic, chemical kinetic,
and quasi-steady ablation model are presented. The numerical method is based on a streamline upwind
Petrov–Galerkin (SUPG) stabilized finite element formulation. The formulation and implementation of
the finite element approximation are discussed in detail. The performance of the scheme is investigated
through a series of increasingly complex applications, culminating in the simulation of a three-dimen-
sional ablating heatshield in transitioning flow.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Vehicles built for atmospheric entry encounter hazardous ther-
mal environments due to the high velocity of the vehicle. In order
to protect the vehicle from such conditions, a thermal protection
system (TPS) is employed. One such TPS uses non-reusable, ablat-
ing surfaces to reduce and dissipate the large heat fluxes encoun-
tered. Because atmospheric entry conditions are notoriously
difficult to replicate in the laboratory, mathematical models play
a crucial role in TPS development.

To date, several ‘‘one-way’’ coupling approaches have been used
wherein the chemically reacting flow field is computed indepen-
dently of ablating conditions. Then, the computed flow field is used
as boundary conditions for a separate ablation model. A number of
studies have been conducted using schemes similar to the one-way
coupling scheme discussed [1–9]. One of the shortcomings of such
an approach is that the chemical effects of the material injected
into the flow by the ablator are absent.

More recently, a two-way, loose coupling was developed [10].
In that work, a non-overlapping domain decomposition, opera-
tor-splitting approach was used to couple a zero-dimensional sur-
face ablation model to a computed flow field, using a modified

version of the DPLR [11] code referred to as DPLR++. The ablation
solution provided nonlinear Dirichlet boundary conditions for each
cell on the surface. A flow time step with these conditions updated
the flow domain results, which would then provide inputs to the
next ablation solve. This iteration would proceed to steady state.

Although this approach obtains a coupled reacting flow solution
including chemistry due to injected ablation products, it suffered
from slow convergence to steady state. This is a serious problem
when one wishes to find steady state solutions for many values
of model parameters in an uncertainty quantification analysis.
The convergence of the operator splitting approach would become
particularly relevant when combined with fully implicit flow for-
mulations such as the one in [12] in which the operator splitting
convergence would become the primary limiting factor to time
step size and thus to performance.

Closer to the present work is that of Maclean and coworkers. In
[13], they present a surface ablation model, identical to that used
in earlier work in [14,10], which is implicitly coupled to the finite
volume codeDPLR. They show two-dimensional results, particularly
focused on arc jet applications, but no three-dimensional results.

In this work, we discuss a fully implicit solution of the com-
pressible reacting Navier–Stokes equations in thermal nonequilib-
rium with surface ablation. The ablation model is identical to that
used in [10] and discussed in [14]. Section 2 describes the mathe-
matical model used. Then, Section 3 highlights the stabilized finite
element method used throughout this work. In particular, we draw
attention to alternative forms of the stabilization parameter sSUPG
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that can have a dramatic impact on the robustness of the solution
algorithm. In Section 4.1, we describe the implementation and ver-
ification of the finite element formulation in the code FIN-S, built
on the libMesh finite element library [15], and the salient features
enabling more effective solution convergence. Section 4.3 details
the implicit algorithm. A variety of two-dimensional and three-
dimensional results are in Section 5, including an axisymmetric
capsule with an ablating surface. In particular, we demonstrate
substantial performance and convergence improvements over the
previous operator-splitting scheme [10]. Finally, we conclude in
Section 6.

2. Mathematical model

In this section, we describe the details of the mathematical
model. We start with the conservation equations, then discuss
the turbulence model used. Next, we detail the thermochemistry
and transport models considered in this work. Finally, we rewrite
the equations in system form, which are more natural for consider-
ing weak formulations.

2.1. Conservation equations

The conservation laws for this class of problems are the com-
pressible, reacting, Navier–Stokes equations in thermal nonequi-
librium (see, e.g., [16,17]):
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Here, qs is the density of species s, t is time, u is the velocity vector,
q is the density of the chemical mixture, Ds is the diffusivity of spe-
cies s, cs is the species mass fraction, _xs is the net mass production
of species s due to chemical reactions, P is the pressure, s is the vis-
cous stress tensor, E is the specific total energy, H ¼ hþ 1

2 u � u is the
total enthalpy, h is the mixture specific enthalpy, specific enthalpy,
q is the heat flux vector, hs is the species specific enthalpy, eV is the
specific vibrational energy, qV is the vibrational heat flux vector, eVs

is the species specific vibrational energy, and _xV is the vibrational
energy production due to the creation of molecules with some
vibrational/electronic energy as well as the transfer of energy be-
tween the various modes in the gas. The special case of thermal
equilibrium is recovered simply by omitting (4).

Note that we have assumed species diffusion velocities obey
Fick’s Law:

qsus ¼ �qDs$cs ð5Þ

Furthermore, we assume the gas behaves as a Newtonian fluid
obeying Stokes’ hypothesis:

s ¼ l $uþ $T u
� �

� 2
3
l $ � uð ÞI ð6Þ

where l is the fluid viscosity. Finally, we currently neglect radiative
heat transfer and assume Fourier’s law for heat conduction:

q ¼ �k$T � kV$TV ð7Þ
qV ¼ �kV$TV ð8Þ

where T, TV are, respectively, the translational and vibrational tem-
peratures while k, kV are the translational and vibrational thermal
conductivity.

2.2. Turbulence modeling

Although (1)–(4), with additional thermochemistry and trans-
port models, comprise a complete set of equations for the model-
ing of hypersonic flows, the computational resources necessary
to adequately resolve all the scales of turbulence are not readily
available. Instead, the governing Eqs. (1)–(4) are averaged to pro-
duce the Favre-averaged Navier–Stokes (FANS) equations. These
mean equations are unclosed due to averaging over nonlinear
terms, which necessitates the addition of a turbulence model to
close the system. In this work, the eddy viscosity concept is used
to represent the effects of turbulence. In particular, the model
equations take the same form as (1)–(4) but the variables are mean
quantities and the transport properties are augmented by ‘‘eddy’’
transport variables as follows:

l! lþ lt ;

Ds ! Ds þDt;

k! kþ kt ;

kV ! kV þ kV ;t:

The eddy mass diffusivity Dt and thermal conductivities kt and
kV,t are computed from the eddy viscosity lt:

Dt ¼
lt

qSct
;

kt ¼
ltCp

Prt
;

kV ;t ¼ gltC
vib
v ;

where Sct, Prt, and g are model parameters and the specific heats are
discussed in Section 2.4.1. To complete the model, the eddy viscos-
ity lt must be defined. Here, the Spalart–Allmaras (SA) one-equa-
tion model [18] is used to compute the eddy viscosity. This model
is written in terms of a single PDE for the working variable msa,
which is algebraically related to the eddy viscosity. Specifically,
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Further, the turbulence model has the following algebraic clo-
sure relationships:

lt ¼ qmsafv1 ð10Þ
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v3

v3 þ c3
v1

ð11Þ
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ð12Þ

v ¼ msa

m
; ð13Þ
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w3
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g ¼ r þ cw2 r6 � r
� �

ð15Þ

r ¼ msa

Ssaj2d2 ð16Þ

The remaining closure function, Ssa, is slightly different from
that specified in the original model. In the original formulation
[18], Ssa is given by

Ssa ¼ Xþ msa

j2d2 fv2; ð17Þ
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