
Solving seven-equation model for compressible two-phase flow
using multiple GPUs

Shan Liang a,b,c, Wei Liu a, Li Yuan a,⇑
a LSEC and NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
b Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China
c State Key Laboratory of Mathematical Engineering and Advanced Computing, Wuxi 214000, China

a r t i c l e i n f o

Article history:
Received 17 October 2013
Received in revised form 17 April 2014
Accepted 20 April 2014
Available online 28 April 2014

Keywords:
Compressible multiphase flow
Seven-equation model
HLLC
TVD Runge–Kutta
GPU computing

a b s t r a c t

In this paper, the application of an HLLC-type approximate Riemann solver in conjunction with the third-
order TVD Runge–Kutta method to the seven-equation compressible two-phase model on multiple
Graphics Processing Units (GPUs) is presented. Based on the idea proposed by Abgrall et al. that ‘‘a
multiphase flow, uniform in pressure and velocity at t ¼ 0, will remain uniform on the same variables
during time evolution’’, discretization schemes for the non-conservative terms and for the volume frac-
tion evolution equation are derived in accordance with the HLLC solver used for the conservative terms.
To attain high temporal accuracy, the third-order TVD Runge–Kutta method is implemented in conjunc-
tion with operator splitting technique, in which the sequence of operators is recorded in order to com-
pute free surface problems robustly. For large scale simulations, the numerical method is implemented
using MPI/Pthread-CUDA parallelization paradigm for multiple GPUs. Domain decomposition method
is used to distribute data to different GPUs, parallel computation inside a GPU is accomplished using
CUDA, and communication between GPUs is performed via MPI or Pthread. Efficient data structure and
GPU memory usage are employed to maintain high memory bandwidth of the device, while a special
procedure is designed to synchronize thread blocks so as to reduce frequencies of kernel launching.
Numerical tests against several one- and two-dimensional compressible two-phase flow problems with
high density and high pressure ratios demonstrate that the present method is accurate and robust. The tim-
ing tests show that the overall speedup of one NVIDIA Tesla C2075 GPU is 31� compared with one Intel
Xeon Westmere 5675 CPU core, and nearly 70% parallel efficiency can be obtained when using 8 GPUs.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Compressible two-phase flows exist broadly in nature and
industry (like bubbles in ocean, cavitations in hydraulic machinery,
flows in chemical reactors and cooling circuits of power plants).
Numerical simulations of compressible two-phase flows are
important research topics. As this type of flows are complex and
diverse, a variety of two-phase models with various levels of com-
plexity were proposed in literature, like the complete seven-equa-
tion model [1–3], the reduced six-equation model [4], and the
more reduced five-equation model [5], to mention just a few. Most
two-phase models are derived from integrating individual balance
equations weighted by a characteristic function for each phase.
This volume average procedure removes the interfacial
detail while introducing additional non-conservative terms for
describing interactions between phases. The resultant two-phase

models pose challenge to numerical solutions mainly due to the
complicated characteristics of the equation system and the trou-
blesome non-conservative terms.

In this paper, we are interested in numerical solution of the
compressible seven-equation two-phase model [2,3]. In this model,
each phase is assumed to have its own velocity, pressure and den-
sity, which satisfy respective balance equations. The evolution
equation of volume fraction is introduced from integrating the
characteristic function to describe how fluid compositions change
with time. Due to non-equilibrium of velocity and pressure, drag
forces appear between phases causing momentum and energy
exchange. In the case of one space dimension, the model has seven
equations (two sets of mass, momentum, and energy equations,
one volume fraction evolution equation). The advantage of this
model is that it is unconditionally hyperbolic, and can treat a wide
range of applications including non-equilibrium dispersive multi-
phase flows as well as free-surface multi-fluid flows [3]. For the
latter case, the velocity and pressure of all phases on each side of
the interface must be in equilibrium from a physical point of view

http://dx.doi.org/10.1016/j.compfluid.2014.04.021
0045-7930/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +86 10 62625219.
E-mail address: lyuan@lsec.cc.ac.cn (L. Yuan).

Computers & Fluids 99 (2014) 156–171

Contents lists available at ScienceDirect

Computers & Fluids

journal homepage: www.elsevier .com/locate /compfluid

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2014.04.021&domain=pdf
http://dx.doi.org/10.1016/j.compfluid.2014.04.021
mailto:lyuan@lsec.cc.ac.cn
http://dx.doi.org/10.1016/j.compfluid.2014.04.021
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid


[2,3,6], which can be realized by infinite pressure and velocity
relaxation process in the model. As the volume fraction only stands
for the constitutive fluid distribution, the material surface is indi-
rectly represented by location where large gradient occurs. The
bulk interface is tracked without considering the details even when
the distortion is complicated (cavitation, breakdown and coales-
cence of bubbles, etc.). Of course, the computational cost is larger
than a free-surface oriented method, e.g., it is about three times
as that of the ghost fluid method according to our experience.

Although the seven-equation model is unconditional hyper-
bolic, the numerical solution has particular difficulties because it
is hard to solve the associated Riemann problem with a large sys-
tem of equations, and careless approximations to the non-conser-
vative terms in the momentum and energy equations and the non-
conservative evolution equation (the volume fraction equation)
will often lead to failure in computation. Therefore, the key in
numerical solution is to construct an accurate and efficient approx-
imate Riemann solver and at the same time derive corresponding
discretization schemes for the non-conservative terms and the
non-conservative volume fraction equation.

Many studies have devoted to numerical solution of compress-
ible two-phase models in various variants. Saurel et al. [2,3] used
operator splitting approach to treat the hyperbolic part and the
relaxation terms of their seven-equation model, but the adopted
HLL approximate Riemann solver led to excessive numerical diffu-
sion of contact discontinuities due to the use of only two waves in
lieu of full waves. Li et al. [7] developed a simple HLLC scheme for
the seven-equation model, but they only considered the subsonic
case, and used Roe average for the unknown intermediate state
of the volume fraction. Zein et al. [8] also presented a simple
HLLC-type scheme for the seven-equation model that took into
account the heat and mass transfer through relaxation effects.
Combining the thin layer theory with special choice for interfacial
variables in liquid–solid problems, Tokareva and Toro [9] proposed
a HLLC-type approximate Riemann solver which took into account
full waves for the Baer-Nunzatio model. Tian et al. [10] imple-
mented the path-conservative method and a simple HLLC solver
for the reduced five-equation model. Yeom and Chang [4] pre-
sented a modified HLLC-type scheme for a six-equation model
which restores the characteristic fields that have been neglected
in the Zein’s simple HLLC-type scheme [8]. A more thorough effort
to construct approximate Riemann solver for the Saurel-Abgrall
model was made recently by Ambroso et al. [11]. Their definition
of Riemann problem included not only convective terms and
non-conservative terms, but also source terms associated with
gravity and drag forces (the drag force source is often separately
treated as velocity relaxation process), while pressure relaxation
process was split from them alone. In all the work mentioned
above, the multiphase flow equations were approximated by
numerical methods, but a strategy proceeded in the opposite
way was proposed by Abgrall [12], which dealt with mixtures
and interfaces under a unique formulation. They started from the
pure phase Euler equations at the microscopic level, and gave cor-
responding numerical approximations via the Godunov scheme
and the HLLC flux. After randomization, ensemble average proce-
dures and estimation of the various coefficients of these approxi-
mations, numerical scheme for the averaged multiphase flow
equations was derived.

In this study, the first objective is to develop a robust high res-
olution numerical method for the Saurel-Abgrall’s seven-equation
compressible two-phase model, which has the simple form of a
conventional HLLC scheme and the high temporal accuracy of the
third-order TVD Rung-Kutta method. We advance the solution
with the third-order TVD Runge–Kutta method, inserting the split-
ting strategy [3] for the hyperbolic operator and the relaxation
operators into every sub-step of the Runge–Kutta method. We

reorder the sequence of the split operators so that the resulting
Runge–Kutta method can work robustly for extreme compressible
gas–liquid two-fluid flow problems with high density and high
pressure ratios. To obtain a simple scheme, we apply the conven-
tional HLLC flux to the conservative part of the two-phase model
in a way similar to Li [7] and Zein [8], and then utilize the homo-
geneity idea for a multi-phase system [6] to derive discrete formu-
las for the non-conservative terms and the non-conservative
evolution equation corresponding to the HLLC flux used. Our deri-
vation takes into account both subsonic and supersonic cases of the
HLLC scheme rather than only subsonic case as did in Ref. [7].

The second objective of this study is to efficiently reduce the
simulation time posed by numerical solution of the seven-equation
two-phase model. To this end, we implement our numerical
method using CUDA-GPU parallel computing technology. CUDA
(Compute Unified Device Architecture) [13] is a programming
model for realizing general purpose GPU (Graphics Processing
Unit) computing. Recently there is a surge in hybrid CPU/GPU com-
putations using rapidly evolving GPU architectures and CUDA pro-
gramming paradigm [14]. In single GPU computing, Ref. [15]
accelerated a solver for the Euler equations, and observed 29�
and 16� speedups for 2D and 3D problems respectively. Ref. [16]
pioneered GPU acceleration of problems on non-uniform and irreg-
ular grids for the 3D compressible Euler equations, and obtained
15� to 40� speedups using NVIDIA 8800GTX GPU compared with
a single Intel Core 2 Duo E6600(2.4 GHz) CPU. When conducting
GPU computing on multiple GPUs, three parallel modes are avail-
able: single-thread multi-stream mode (CUDA 4.0 and above), in
which every involved device is bounded to a CUDA stream;
multi-thread multi-GPU mode (Pthread- or OpenMP-CUDA), in
which more than one threads are invoked and each thread controls
one GPU; multi-process multi-GPU mode (MPI-CUDA). The former
two modes are applicable only to a shared memory machine with
several GPUs, while the third one is also applicable to a cluster
with many GPUs. Ref. [17] implemented 3D incompressible
Navier–Stokes equations in CUDA with the help of Pthread. Using
four Tesla C870 GPUs, the computation time was reduced to
1=100 of single AMD Opteron 2.4 GHz CPU, and 1=3 of a single
GPU. Ref. [18] obtained linear speedup for fewer than four GPUs
when solving a 3D equation using a high order finite difference
method. Ref. [19] optimized a finite difference code for direct
numerical simulations of turbulence on a GPU accelerated cluster,
and obtained a speedup of 20� for 192 M2070 Fermi GPUs vs. 192
Xeon Westmere 2.93 GHz CPU cores. In their implementation, all
computations were packed in kernel functions for running in the
devices (GPUs), and the communication between devices was done
through MPI. The boundary cells of each subdomain were dealt
with first, and data copy as well as message passing process were
synchronized with inner cell computation, through which the
time latency due to data copy and message passing was hidden
efficiently.

In our implementation, we use both hybrid MPI-CUDA and
Pthread-CUDA parallelization on a shared memory AMAX machine
with 2� Intel Xeon Westmere 5675 3.06 GHz six-core CPUs, con-
nected via PCIE2 slot to 8� NVIDIA Tesla C2075 Fermi GPUs. Each
computational grid point is mapped to a GPU thread, and appropri-
ate data structure is adopted to exploit the high memory band-
width of GPU. We design a special procedure including atom
operator to synchronize thread blocks. This make reduction opera-
tions like min or max execute completely inside GPU without exit-
ing a kernel, thus eliminating numerous kernel-launching
overheads. Besides, we use domain decomposition method for
multi-GPU computing. The computation of every subdomain is
assigned to a device, while the communication between devices
is performed through MPI or Pthread. Both modes are compared
in numerical tests.

S. Liang et al. / Computers & Fluids 99 (2014) 156–171 157



Download English Version:

https://daneshyari.com/en/article/761942

Download Persian Version:

https://daneshyari.com/article/761942

Daneshyari.com

https://daneshyari.com/en/article/761942
https://daneshyari.com/article/761942
https://daneshyari.com

