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a b s t r a c t

In this paper, high-order finite-element discretizations consisting of discontinuous Galerkin (DG) and
streamline upwind/Petrov Galerkin (SUPG) methods are investigated and developed for solutions of
two- and three-dimensional compressible viscous flows. Both approaches treat the discretized system
fully implicitly to obtain steady state solutions or to drive unsteady problems at each time step. A mod-
ified Spalart and Allmaras (SA) turbulence model is implemented and is discretized to an order of accu-
racy consistent with the main Reynolds Averaged Navier–Stokes (RANS) equations using the present
high-order finite-element methods. To accurately represent the real geometry configurations for viscous
flows, high-order curved boundary meshes are generated via a Computational Analysis PRogramming
Interface (CAPRI), while the interior meshes are deformed subsequently through a linear elasticity solver.
The mesh movement procedure effectively avoids the generation of invalid elements that can occur due
to the projection of curved physical boundaries and thus allows high-aspect-ratio curved elements in vis-
cous boundary layers. Several numerical examples, including large-eddy simulations of viscous flow over
a three-dimensional circular cylinder and turbulent flows over a NACA 4412 airfoil and a high-lift multi-
element airfoil at high angles of attack, are considered to show the capability of the present high-order
finite-element schemes in capturing typical viscous effects such as flow separation and to compare the
accuracy between the high-order DG and SUPG discretization methods.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

High-order discretization methods have gained increasing pop-
ularity in the past decade for a wide variety of fluid dynamics appli-
cations [1–7]. More and more physically realistic problems can be
tackled through the use of such methods to obtain high accuracy
solutions, while reducing the need for extremely high-resolution
meshes that are often required by lower-order methods. Moreover,
a great deal of effort has been devoted to the versatility, robustness
and efficiency of high-order flow solvers, including adaptive mesh
refinement techniques [8–12], solution limiting and shock captur-
ing methods [13–15,9,16], hybrid methodologies and multigrid
solution strategies [2,17–19]. To this end, this work is concentrated
on the development of high-order discretization methods, consist-
ing of both discontinuous Galerkin [1–3,6,18,9,20] and streamline
upwind/Petrov Galerkin [21–24] discretizations, to further expand
the capability of high-order schemes in solving a wide range of

viscous flow problems for complex geometries. Research efforts
are also placed on qualitative comparisons of the solution accuracy
between the high-order DG and SUPG methods. Moreover, applica-
tions of the present methods for studying the flows around bluff
bodies at sub-critical Reynolds numbers and simulations of turbu-
lent flows are considered.

The application of high-order methods to turbulent flows has
become an active research topic in the computational fluid dynam-
ics (CFD) community. It is known that high-order schemes are
well-suited for problems with smooth solutions, in which the order
of solution accuracy can be generally achieved. However, as the
high-order methods are applied to turbulent flows using, for exam-
ple, the Spalart–Allmaras (SA) turbulence model [25], robustness
becomes a challenge for high-order methods because the turbu-
lence working variable decreases abruptly at the edge of turbulent
and laminar regions, thus leading to unavoidable oscillations and
often negative values, which subsequently causes the solver to fail.
Recent work [5,26] has investigated a modified SA turbulence
model to avoid the stability issues caused by negative turbulence
working variable. In the present work, the modified SA turbulence
model is utilized and is fully coupled with the main conservation
equations, and furthermore, consistent high-order finite-element
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discretizations, including the present DG and SUPG methods are
applied to the full system of equations.

In addition, the use of high-order curved boundary elements is
important for high-order schemes to deliver an overall accurate
solution [27,28]. Poor representation of the actual geometry can
lead to excessive production of artificial entropy along the geome-
try surface, thus degrading the solution accuracy [24]. This is espe-
cially the case in the context of high-order methods because
relatively coarse meshes are generally utilized where surface nodes
or cells can span a large portion of the surface. On the other hand,
more attention is needed when high Reynolds number flows are
involved. To allow the use of high-aspect-ratio elements in a thin
boundary layer, curvilinear interior elements are required in
response to the projection of curved boundary faces and edges into
the interior mesh. In this context, the current work makes use of a
CAPRI [29] mesh parameterization tool [30] for evaluating the true
positions of additional surface quadrature points [31] on arbitrary
three-dimensional configurations, thus enabling higher-order
(greater than linear) representations to enhance the surface grid
definitions. A linear elasticity mesh movement strategy is solved
subsequently to prevent the generation of negative-Jacobian
elements.

For viscous or turbulent flow problems, the viscous flux terms
are numerically treated using an explicit symmetric interior pen-
alty (SIP) method [3,19] for the present DG discretizations. The
SIP method is simultaneously applied to the modified one-equa-
tion SA turbulence model to handle the second derivatives of the
turbulent working variable arising from the model. An advantage
of the SIP method is that it does not require introduction of any
auxiliary variables, and moreover, the scheme maintains a compact
element-based stencil, which simplifies the linearization of the dis-
cretized system for developing implicit methods. In the SUPG
methods, on the other hand, the solution is assumed to be contin-
uous across the computational domain. Therefore, the surface
fluxes cancel at elemental interfaces (different from the DG meth-
ods) and are only carried out over the domain boundaries. How-
ever, due to lack of dissipation, stabilization becomes a key
component in the Petrov Galerkin finite element method. This is
achieved through the addition of a stabilization term which acts
only in the streamline direction [32]. A consistent and stabilized
SUPG formulation is thus constructed by modifying the Galerkin
weighting function with the additional streamline-upwind stabil-
ization term and applying the modified weighting function to the
entire system of equations. A noticeable difference between the
SUPG and DG methods is that, due to the fact that the solution
modes or nodes in the SUPG method are stored only once at each
edge or face [24], the former scheme requires fewer degrees of
freedom than the latter scheme for the same order of discretiza-
tions. For time-dependent problems, a standard second-order
backward difference formula (BDF2) is considered. The implicit
system is solved using an approximate Newton method, where
the linear system is solved via an element Gauss–Seidel scheme
or a preconditioned GMRES approach with ILU (k) preconditioning
[33,34]. A multigrid approach [18,35] is also implemented in the
DG flow solver to accelerate the solution convergence.

An outline of the paper is as follows. In Section 2 the governing
equations are introduced, including the modified Spalart and Allm-
aras turbulence model. Section 3 describes consistent discretiza-
tions of the full system of equations using discontinuous
Galerkin and streamline upwind/Petrov Galerkin discretizations
as well as an implicit time-integration scheme. Section 4 briefly
reviews the integration of CAPRI with the mesh movement strat-
egy used in the current work. Several numerical examples are pre-
sented in Section 5 to demonstrate the performance of the current
high-order schemes in capturing complex flow structures for
three-dimensional viscous flow and turbulent boundary layer

separation. Finally, Section 6 summarizes the conclusions and dis-
cusses the future work.

2. Governing equations

The compressible Reynolds Averaged Navier–Stokes equations
coupled with the modified one-equation Spalart–Allmaras turbu-
lence model [5,6,26] can be written in the following conservative
form:

@Uðx; tÞ
@t

þr � ðFeðUÞ � FvðU;rUÞÞ ¼ SðU;rUÞ in X ð1Þ

where X is a bounded domain. The vector of conservative flow vari-
ables U, the inviscid and viscous Cartesian flux vectors, Fe and Fv ,
are defined by:
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where the notations q , p, and E denote the fluid density, pressure
and specific total energy per unit mass, respectively. u ¼ ðu;v ;wÞ
represents the Cartesian velocity vector and ~v represents the turbu-
lence working variable in the modified SA model. The pressure p is
determined by the equation of state for an ideal gas,

p ¼ ðc� 1Þ qE� 1
2
qðu2 þ v2 þw2Þ

� �
ð4Þ

where c is defined as the ratio of specific heats, which is 1:4 for air. s
represents the fluid viscous stress tensor and is defined, for a New-
tonian fluid, as,

sij ¼ ðlþ lTÞ
@ui
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� 2
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where dij is the Kronecker delta and subscripts i; j; k refer to the
Cartesian coordinate components for x ¼ ðx; y; zÞ. l refers to the
fluid dynamic viscosity and is obtained via the Sutherland’s law.
lT denotes the turbulence eddy viscosity, which is obtained by:

lT ¼
q~vfv1 if ~v P 0
0 if ~v < 0

�
ð6Þ

The source term, S, in Eq. (1) is given by S ¼ ½0; 0;0;0; 0; ST �T , where
the components for the continuity, momentum and energy equa-
tions are zero. The source term corresponding to the turbulence
model equation takes the following form [5,6]:
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