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a b s t r a c t

To investigate the in-depth mechanism of vortex-induced vibration of a circular cylinder with shear flow,
in this paper, with the use of exponential-polar coordinate attached on the moving cylinder, the stream
function-vorticity equations of vortex-induced vibration, the initial/boundary conditions and distribution
of hydrodynamic force together with cylinder motion equation in shear flow are deduced, the hydrody-
namic force consists of inertial force, the vortex-induced force and viscous damping force. Similarly, the
cylinder motion equation with virtual mass is induced where the virtual mass consists of the cylinder
mass, the potential added mass and the apparent added mass induced by viscosity. Our numerical results
revealed that there are three factors affecting fluid-structure interactions from the fixed cylinder to its
steady vibration: The first is the vortex shedding where one side shear layer of cylinder strengthens with
the effect of the dominated vortex. The second is the vibration of cylinder which pushes the fluid on the
pressure side and pumps that on the suction side. The third is the vortexes strengthen in one side and
weaken in the other side together with the shift of front stagnation point with the effect of background
vortex which is generated by shear flow. The character of vortex-induced vibration in shear flow are
affected by the above three factors.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Fluid–structure interactions [1–9] occur in many engineering
fields. These interactions give rise to complicated vibrations of
the structures and can cause structural damage under certain unfa-
vorable conditions. For a cylinder mounted on flexible supports,
the fluctuating forces induced by changing vortex shedding cause
the cylinder to vibrate. Next, the vibrating cylinder alters the flow
field, which, in turn changes the flow-induced force. The vibration
of the cylinder can increase further until a limiting behavior is
reached. This vortex-induced vibration (VIV) phenomenon is one
of the most basic and revealing problems.

Representative experimental studies on VIV include those of
Feng [10], Griffin and Koopmann [11], Griffin [12], Griffin and Ram-
berg [13], Brika and Laneville [14] and Hover et al. [15], in which
classic lock-in was observed, whereas the shedding frequency
coincided with the natural structure frequency. The cylinder expe-
riences significant vibration only with lock-in, and the vibration
amplitude has a strong relationship with the phase difference
between the lift force and the cylinder motion. However, recently,

the experimental results of Gharib [16] and Khalak and Williamson
[17] provided examples of significant flow-induced vibration with-
out lock-in and suggested that the lock-in of VIV is dependent on
the values of the cylinder/fluid mass ratio. Recently, Franzini
et al. [18], Lam and Zou [19] and Korkischko and Meneghini [20]
focus on the interaction of multiple cylinders. It was found that
the gap or arrangement has a significant effect on the response
of the VIV system. Moreover, the experimental results of flow
around a circular cylinder with moving surface boundary layer
control (MSBC) have been presented which has the advantages of
drag reduction and vibration suppression [21].

Various numerical approaches have also been proposed to treat
the fully coupled problem involved in VIV. It can be divided into
two broad categories usually. For the one, Navier–Stokes equations
are solved directly, such as the direct numerical simulation [22–
25], the spectral element spatial method [26,27] and the finite ele-
ment method [28–30]. For the other, the flow field is obtained by
solving the vorticity transport equations, where the usual assump-
tion is a two-dimensional laminar flow, such as VIC (vortex-in-cell)
method [31] and the viscous-vortex method [28,32]. It has been
shown from these studies that in a great majority of the cases,
the response is essentially sinusoidal. The lock-in phenomenon
was discussed, and the vortex-induced vibrations on a circular cyl-
inder and the associated phenomena, such as the response of the
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cylinder, the unsteady lift and drag on the cylinder, the vortex
shedding frequency, and the effects of the cylinder motion on the
vortex structure in the wake [33,34], were examined further.
Recently, numerical simulation for the interaction of multiple cyl-
inders was also performed [19,31,35–38]. The flow interference
between two circular cylinders, one stationary and the other free
to oscillate in the transverse direction were studied [39]. Moreover,
two-degrees-of-freedom vortex-induced vibrations of a circular
cylinder close to a plane boundary were investigated [40,41].

The progress made during the past two decades on VIV has been
reviewed [42,43]. It is clear that the investigation of fluid–structure
interactions as a fully coupled problem are far from complete, and
there still remain some uncertainties, such as added mass, force
decomposition and their effects on the characteristics of the
fluid–structure system. Therefore more investigations on an in
depth analysis are necessary.

In this paper, the VIV with shear flow is investigated numeri-
cally. The problems discussed are described by the stream func-
tion–vorticity equations in coordinates attached on the moving
cylinder, coupled with the cylinder motion equation. The hydrody-
namic forces on the cylinder surface are completely derived math-
ematically from the governing equations, which consists of vortex-
induced force, inertial force and viscous damping force. It is worth
noting that the viscous damping force related directly with Rey-
nolds number, giving the viscous contribution on damping cylinder
vibration, is usually neglected in some earlier publications due to
the widely accepted Lighthill’s force decomposition. In addition,
added mass, one of the most confused parameters in mathematical
expression, has also been derived mathematically by the assump-
tion of the sinusoidal response, which consists of the cylinder
mass, the potential added mass and the apparent added mass
induced by viscosity. Finally the phase angles among the cylinder
displacement, the total lift force and the vortex-induced lift force
are formulated related with the amplitudes of the vibrating cylin-
der and force.

The equation of vorticity transport is solved by using the Alter-
native-Direction Implicit (ADI) algorithm. And the equation of
stream function is integrated by means of a Fast Fourier Transform
(FFT) algorithm [44–47]. Meanwhile the cylinder motion is calcu-
lated by the Runge–Kutta method [44].

In order to reveal the deeper understanding of the fluid–struc-
ture interaction of VIV after the limiting behavior has been
reached, the effects of the instantaneous wake geometries and
the corresponding cylinder motion on the hydrodynamic forces
distributed on the cylinder surface are discussed numerically in
one entire periodic of vortex-shedding. The drag–lift phase dia-
gram is employed to discuss the effects of VIV on drag and lift
forces, which not only denotes the corresponding fluctuation of
the drag and lift over a complete time period, but also implies
the detail information of the flow patterns. The variations of some
characteristics of the fluid–structure interaction of VIV, such as dis-
placement and amplitude of VIV cylinder, in-phase and out-of-
phase components of the fluid force, phase angle between the lift
force and the cylinder displacement, added mass, lift and drag,
etc., in this evolution process are also described.

2. Governing equations

A circular cylinder placed in a flow experiences alternating lift
and drag due to vortex-shedding. Thus, a cylinder mounted on flex-
ible supports is expected to undergo vibrations, known as vortex-
induced vibration (VIV). The vibration of cylinder affects the flow
around the cylinder which, in turn, changes the induced hydrody-
namic forces on the cylinder and hence the structure response. This
is a fully coupled fluid–structure interaction problem.

The stream–vorticity equations in the exponential–polar coor-
dinates system (n, g), r = e2pn, h = 2pg, attached on the moving cyl-
inder, for an two-dimensional incompressible fluid become
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ur and uh the velocity components in r and h directions, respectively.
Furthermore, H = 4p2e4pn, Re ¼ 2u1a

m , u1 is the free-stream velocity, m
is the kinematic viscosity, a is the cylinder radius, the non-dimen-
sional time is t ¼ t�u1

a . It is noteworthy that the above equations
(Eqs. (1), (2)) have the same form as that in the absolute coordinate
system.

The sketch of shear flow with a linear velocity profile u = u1 +
Gy [48] over a cylinder in two-dimensional approach is shown in
Fig. 1, where u1 is the free-stream velocity at the center-line
h = 0, y is the coordinate in the lateral direction with y = 0 at the
center of the cylinder, and G is the lateral velocity gradient.

The shear rate K is defined as K = 2Ga/u1, a is the cylinder
radius. Only the case of a positive shear rate (K > 0) is discussed
in the paper, which implies that the flow velocity on the upper side
is faster than that on the lower side.

An analytic solution [49] for shear flow shown in Fig. 1 can be
derived when the flow field is considered to be inviscid initially,
that is

w ¼ �2shð2pnÞ sinð2pgÞ þ K
2

2chð2pnÞ cosð4pgÞ � e2pn
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and X ¼ K ð3Þ

At t > 0, under the action of the vortices, the constrained cylinder
begins to vibrate in the transverse direction. In terms of the Galilean
velocity decomposition and the stream function definition, we have

w ¼ w0 þ dlðtÞ
dt

e2pn cosð2pgÞ

where superscript ‘‘0’’ represents the absolute coordinate, no super-
script denotes the coordinate fixed on the cylinder moving with the
velocity dlðtÞ

dt , l is the dimensionless cylinder displacement in the
transverse direction.

Defining the relative angle of the incoming flow direction

h0 ¼ tan�1 dlðtÞ
dt

h i
, then

w ¼ w0 þ ðtan h0Þe2pn cosð2pgÞ ð4Þ

Fig. 1. Sketch of shear flow over circular cylinder.
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