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a b s t r a c t

Two alternate modifications are proposed to the dissipation term in the mass flux computation of the low
dissipation AUSM scheme (SLAU2) developed recently by Kitamura and Shima [1,2]. These modifications
are required to remove the odd–even type instability that results in lateral oscillations behind oblique
shocks predicted by MUSCL based higher order versions of SLAU2. The first modification involves switch-
ing between the original term in SLAU2 and one similar to corresponding term in AUSM+-up. The second
modification involves use of density gradient aligned velocity instead of total velocity in SLAU2 (or face
normal velocity as in AUSM+-up) in calculation of Mach number that is required for computing this term.
It is observed that the second alternative not only delivers better results but also has a more easily dif-
ferentiable numerical flux that enables easier implicit computations while not altering the simplicity of
original SLAU2. The method also renders SLAU2 with a good balance between shock stability and contact
capturing ability.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The Advection Upstream Splitting Method (AUSM) based on cell
interface advection Mach number is considered to provide, simul-
taneously, the accuracy of flux difference splitting methods and the
robustness of flux vector splitting methods. It was first proposed by
Liou and Steffen [3] and modified several times [4–6] to address
the various pathological problems associated with high speed flow
solvers. A comprehensive review of AUSM related work was done
by Liou [7] and there have also been some more developments
since then [6,8]. To minimize numerical dissipation, Shima and
Kitamura developed a new AUSM version called SLAU (Simple
Low dissipation AUSM) [1,9]. SLAU2 [2] was developed later to deal
with the high speed flows and the shock capturing problem. While
SLAU2 has many advantages and it is quiet stable, its MUSCL based
second order extension predicted saw-tooth type oscillations in
density field behind oblique shock for compression ramp. It
appears that this susceptibility becomes evident only when
numerical shock thickness is low as it is the case in the second
order version. It is also possible that the oscillations result from
the multidimensional implementation or higher order extension
procedure rather than the scheme itself. In a comparative study
of many high resolution schemes, Liska and Wendroff [10] showed
that while Piecewise Parabolic Method (PPM) [11] is one of the
best schemes to capture the fronts in the Woodward–Collela

one-dimensional interacting blast waves test problem, it develops
unphysical wiggles while a simulating circular blast wave (test
case suggested by Toro). Most contact line resolving flux split
schemes like HLLC [12] suffer from the so called odd–even instabil-
ity. EFMO (equilibrium flux method with Osher intermediate
states) scheme [13,14] has been shown to be robust even at Mach
number of 100 for flow around a cylinder [13], it suffers from
odd–even instability [15] in the Quirk test [16]. Shima and
Kitamura [17] showed that SLAU with the van Albada limiter pre-
dicted post shock oscillations for this same problem which were
attributed to pressure difference related damping term becoming
zero in supersonic flows. A Shock Detecting SLAU (SD-SLAU)
scheme was proposed in which SLAU is replaced by LSHUS (low
dissipation simple high resolution upwind scheme) at the shock
front as a fix. Although, multidimensional limiting procedures are
available [18] to overcome problems associated with increasing
spatial order of accuracy, the problem of oscillations in SLAU2 with
higher order accuracy is due to the scheme itself rather than the
MUSCL procedure. In fact, the same MUSCL procedure was adopted
on other schemes to obtain oscillation free solutions.

Several plausible explanations were hypothesized and tested as
to why the oscillations appeared when using SLAU2 scheme in the
present study. In addition to trying out all known second order
TVD limiters, different combination of primitive variables were
considered for interpolation in the MUSCL procedure. Reconstruc-
tion procedure using interpolation of conserved variables, change
in mesh skewness at the corner and a problem with wall boundary
conditions which could propagate along the length of the shock
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were considered. As a simple solution, a damping term that is a
weighted average of the original term in SLAU2 and like one in
AUSM+-up was attempted. This approach is more seamless than
abrupt switching and was deemed more suited for unsteady simu-
lations with moving shocks. Also, the weights are based on a
parameter that characterizes unphysical oscillations rather than a
shock sensor. While this procedure was promising in most of the
test problems considered, it compromised the normal shock
related robustness of the SLAU2 in the Quirk’s test [16]. So, an
alternative procedure which uses density gradient aligned velocity
to calculate Mach number involved in pressure damping term was
constructed and tested.

In the following sections, the SLAU2 scheme and the MUSCL
scheme are explained. The two proposed modifications to prevent
oscillations behind shocks are presented next. The latter modifica-
tion is shown to suppress unphysical oscillations without losing
the established robustness of the SLAU2 scheme. This is demon-
strated through simulations of some standard test problems for
Euler equations.

2. Numerical method

An explicit second order Runge–Kutta scheme (see Appendix A)
was used for temporal integration of the governing equations. For
spatial discretization, the SLAU2 scheme from an earlier study [2]
was chosen. MUSCL procedure with minmod limiter is used for
extension to higher order accuracy in space because it is most
dissipative and thus less likely to amplify oscillations. The multidi-
mensional limiting process [18] is a linear multiple of the minmod
limiter and, therefore, this limiter is more likely to retain multidi-
mensional monotonicity better than any other.

2.1. SLAU2 scheme

The properties on left and right sides of the face are denoted
using subscripts ‘‘L’’ and ‘‘R’’ respectively. The pressure on the face
used for computing pressure flux is obtained using the following
equations.

pface ¼
pL þ pR

2
þ fþðMLÞ � f�ðMRÞ

2
ðpL � pRÞ

þ qL þ qR

2
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In above equations, q, p and K denote the density, pressure and spe-
cific kinetic energy respectively. M represents face normal Mach
number computed using velocity normal to the face and c1/2 is
interfacial speed of sound. Kitamura and Shima [2] noted that the
SLAU2 is not very sensitive to the specification of the interfacial
of sound. A simple geometric mean of the values on either sides is
used after verifying the fact that replacing it with more complex
calculation using critical speed of sound (as in AUSM+-up) has
negligible impact on the results. The mass flux across the face is
computed using following equations
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Dp represents the jump in pressure across the cell face. Velocity
vector and total specific enthalpy from upstream side along with
mass flux from above equations are used to compute the convective
fluxes.

2.2. MUSCL procedure

To extend the order of accuracy, dependent variable values just
to the left and right of the face are computed using higher order
interpolations. Primitive variables are extrapolated from cell cen-
ters to cells faces. Specifically, velocity components, density and
temperature are chosen. The results remained almost unchanged
when temperature was replaced by pressure. The extrapolation
procedure for the face (i + 1/2, j,k) which separates cells (i, j,k)
and (i + 1, j,k) on an uniform computational mesh is as follows
(indices ‘‘j’’ and ‘‘k’’ are dropped for the sake of clarity).

ULðiþ 1=2Þ ¼ Ui þ
/ðrLÞ

2
½Uiþ1 � Ui� ð10Þ

URðiþ 1=2Þ ¼ Uiþ1 �
/ðrRÞ

2
½Uiþ1 � Ui� ð11Þ

U in above equations represents a primitive variable. rL and rR deter-
mine the monotonicity of the variables on either sides of the face
and are determined using following equations.

rL ¼
Ui � Ui�1

Uiþ1 � Ui
ð12Þ

rR ¼
Uiþ2 � Uiþ1

Uiþ1 � Ui
ð13Þ

Higher order computations of face values lead to non-monotonic
behavior around sharp fronts, so a limiter function, u is used to
lower the order locally. Negative r indicates non-monotone behav-
ior and the limiter function is set to zero preventing higher order
extrapolation. A min-mod limiter which is second-order TVD and
also ensures multi-dimensional monotonicity [18] more than any
other limiter is used here.

/ðrÞ ¼maxð0;minð1; rÞÞ ð14Þ

2.3. Modifications to the damping term in mass flux computation

Stability analyses of shock capturing schemes using simple
cases [15,19,20] were reported in several past studies. While most
offered insights into the problems, some have offered actual pre-
scriptions. For example, Dumbser and coworkers [21] presented a
technique to predict threshold upstream Mach number for trigger-
ing odd–even instability for schemes with differential numerical
fluxes. Their analysis also pointed to shock upstream region as
the origin of the instability thus settling the debate between two
contrary views [22,23]. Pandolfi and Ambrosio [19] analyzed many
Riemann solvers including some from AUSM family and prescribed
how to localize damping to cure carbuncle phenomena. Earlier
work by Gressier et al. [15], using linear stability analysis, has
shown that strict stability and exact contact line resolution are
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