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a b s t r a c t

An improvement of the efficiency of implicit schemes based on Newton-like methods for the simulation
of turbulent flows by compressible LES or DNS is proposed. It hinges on a zonal Self-Adaptive Newton
method (hereafter denoted SAN), capable of taking advantage of Newton convergence rate heterogene-
ities in multi-scale flow configurations due to a strong spatial variation of the mesh resolution, such as
transitional or turbulent flows controlled by small actuators or passive devices. Thanks to a predictor
of the local Newton convergence rate, SAN provides computational savings by allocating resources in
regions where they are most needed. The consistency with explicit time integration and the efficiency
of the method are checked in three test cases:

– The standard test-case of 2-D linear advection of a vortex, on three different two-block grids.
– Transition to 3-D turbulence on the lee-side of an airfoil at high angle of attack, which features a chal-

lenging laminar separation bubble with a turbulent reattachment.
– A passively-controlled turbulent transonic cavity flow, for which the CPU time is reduced by a factor

of 10 with respect to the baseline algorithm, illustrates the interest of the proposed algorithm.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Large-eddy (LES) and direct simulations (DNS) have been suc-
cessfully used over the last decade to study academic turbulent
flows. With the improvements of both numerical methods and
supercomputer capacities, these models are now applied to more
complex flow cases, with some industrial relevance, in order to
provide reliable results which cannot be given by experiments.
The next generation of flow problems tackled by DNS/LES involves
multi-scale problems, such as flow control cases, implying the sim-
ulation of multiple temporal and spatial scales, which is very chal-
lenging for computational physics. Development in efficient
numerical algorithms adapted to such problems is of interest for
both researchers and engineers.

The time-explicit schemes used traditionally for simulation of
compressible flows are limited to time steps that satisfy a stability
requirement based on the following generalized CFL number
taking to account both convection and diffusion (molecular and

turbulent parts in the momentum and energy equations, the latter
yields more stringent time step limitations): CFL ¼max Cjujþc; Cjuj;

�
DmÞ where in 1-D

Cjujþc ¼ juj þ c
Dx

Dt; Cjuj ¼ juj
Dx

Dt and Dm ¼ 2c
l

qPrDx2 Dt

with the Courant numbers linked to the acoustic and convective
velocities (Cjujþc and Cjuj, respectively) and the non-dimensional dis-
sipation, generically denoted Dm with a possibly mixed definition of
l=Pr depending on the turbulence modeling approach used. Due to
high local mesh refinements needed to capture the motion of turbu-
lent scales close to walls and around small geometries like control
devices, this stability requirement leads to very small time steps,
in general because of Cjujþc , making explicit schemes less efficient
than in simpler flow configurations and geometries (homogeneous
or free-shear turbulence, uncontrolled wall-bounded flows, etc.).
Implicit time integration, of widespread usage in (U)RANS type
CFD, is increasingly appealing in this context. As shown in [1,2], cau-
tion is needed in the choice of the time step in the DNS/LES context,
since too large values can yield excessive dissipation, even with non-
dissipative spatial discretization. However, the suitability of implicit
schemes has been demonstrated in DNS of wall-bounded turbulence
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[3–5] and in LES of complex flows [6–11]. In these cases, the quality
of the results suggests that the dissipation brought about by large
CFL values (w.r.t. those permitted by explicit time integration with
the same discretizations in space) predominantly affects phenom-
ena that are not crucial to the dynamics investigated (e.g. sound
waves in a non-resonant low-speed aerodynamic problem).

Most implicit simulations use a second-order time accurate
scheme and a Newton-like method [3,5–8,11] with incomplete con-
vergence (i.e. with convergence residuals significantly larger than
machine zero), the influence of which has to be investigated. Below
a threshold value of the residual, which is a priori problem depen-
dent, incomplete convergence of the Newton process is expected
not to be significantly more problematic than round-off errors in
64-bit floating point machines, that is, have little influence on the
flow solution, at least in a statistical sense. It has been noticed in sev-
eral studies [12,13] that the CFL number strongly affects the conver-
gence speed of the Newton process. For multi-scale problems,
heterogeneity of cell sizes yields disparate local CFL values, detri-
mental to the conditioning of the linear system to be solved in the
inner iterative process. With standard Newton methods, the num-
ber of inner iterations is determined by the highest local CFL value,
and is applied to all points (cells or elements) of the domain, hence a
certain waste of numerical resources in low CFL regions.

The Self-Adaptive Newton method proposed hereafter (and
denoted SAN) aims at gaining efficiency by means of a zonal deter-
mination of the number of iterations, with the same overall value
of the convergence residual as the baseline Newton method. This
algorithm is presented in details in Section 2 for a general set of
partial derivative equations. Choices specific to compressible LES

are briefly discussed in Section 3, in which the influence of the
incomplete Newton convergence is also analyzed in the case of a
simplified 1-D advection equation. In Section 4, a detailed valida-
tion of the SAN method is performed in two dimensions, in the case
of the linear advection of isentropic vortex on heterogeneous grids.

Two realistic applications are then considered. The first one
(Section 5) is a transitional/turbulent boundary layer on the suc-
tion side of an airfoil. The configuration selected is known to be
particularly sensitive to small perturbations, and comparison of
the turbulent statistics obtained with counterparts obtained with
high-order explicit time integration and the same discretizations
in space is expected to make a convincing proof of the validity of
the method. This problem is however not multi-scale enough to
highlight the gain in efficiency.

We thus propose a simple configuration of controlled flow,
namely a high-subsonic flow over a deep cavity passively con-
trolled by means of a small spanwise cylinder (Section 6), for
which high-quality experimental data are available [14], and for
which SAN cuts the CPU time by a factor of about 10.

2. Newton method

2.1. Iterative process

For an unsteady physical problem modeled by a nonlinear set of
PDEs, the use of an implicit time integration method leads to a
nonlinear fixed-point problem at each time step of the form:

F Unþ1
� �

¼ 0 ð1Þ

where F represents both the spatial and temporal operators, n is
the time level and U is the state vector to be found. This nonlinear
problem is usually solved via a Newton iterative procedure:

J ðlÞDUðlÞ ¼ �F UðlÞ
� �

¼RðlÞ

Uðlþ1Þ ¼ UðlÞ þ DUðlÞ

8<
: l ¼ 0;1; . . . ð2Þ

where J ðlÞ ¼ @UF UðlÞ
� �

is the Jacobian, RðlÞ 2 IRp is called the New-
ton residual, and p represents the degrees of freedom at each time
step. For unsteady problems, the initialization of this iterative pro-

cess is classically done via Uðl¼0Þ ¼ Un. For highly coupled problems,
the computation and the inversion of the exact Jacobian matrix, J ,
are often very expensive in term of CPU time. Therefore practical
Newton methods are usually based on a Jacobian-free approach
[15] or on an approximate iterative Newton–Raphson method as
in [3,5,6,11]. Convergence to machine accuracy at each time step
may be time-consuming, and not required for the accuracy of the
solution. So, in practice, the nonlinear problem (1) is solved within
a small tolerance. For example in the context of LES or DNS, Rai and
Moin [3] with the second-order time accurate backward differenti-
ation (Gear) scheme apply between two and four inner iterations
per time step to ensure the convergence of the Newton method.
In the same way, Rizzetta et al. [11] use three Newton iterations
with the same time integration. Weber and Ducros [6] with the sec-
ond-order Crank–Nicolson scheme stop the iterative process when
the L2 norm of the Newton residual on density is reduced by three
orders of magnitude. Martín and Candler [5] with the Gear method
use a convergence criterion based upon the per-point average L1

norm of the density convergence error with a practical limit of 20
iterations of the Newton process. The following convergence crite-
rion based on a drop in the L1 norm of the Newton residual is
retained in this study:

RðNnþ1�1Þ
��� ������ ���

1

Rð0Þ�� ���� ��
1

6 e ð3Þ

where e is the user-specified convergence tolerance which is prob-
lem dependent [5] and Nnþ1 is the inner number of iterations when
this tolerance is achieved (and the iterative process stops). Finally,
the update of the numerical solution is given via Unþ1 ¼ UðN

nþ1Þ.

2.2. Self-Adaptive Newton (SAN) method

2.2.1. Motivation
The computational effort to solve the nonlinear unsteady prob-

lem with a targeted convergence criterion is generally driven by
the highest local CFL value: on the one hand the number of nonlin-
ear iterations increases with CFL because Jacobian approximations
are less accurate; on the other hand, the resolution of the linear
system becomes more costly. However, for multi-scale problems
characterized by a high ratio between the smallest and the largest
cell of the whole domain, only a few cells have a high value of the
CFL number. So, during the Newton process, the local residual is as
spatially heterogeneous as the local CFL value, leading to a kind of
‘‘oversolving’’ problem [16]. Thus, a Self-Adaptive Newton (SAN)
method is proposed to appreciably reduce the cost of simulations
by limiting the oversolving problem especially when the grid used
for the computation presents very disparate cells size. The goal of
SAN is to equidistribute the convergence errors by allocating
resources in regions where they are most needed.

Originally, multi-block solvers were developed to handle com-
plex geometries with structured blocks. This characteristic is also
used to adapt the turbulence modeling, thanks to zonal RANS/
LES coupling or to perform parallel computing. More recently,
Tòth et al. [17] proposed to couple explicit and implicit time inte-
gration methods in order to adapt the algorithm to the CFL number
of each block. The idea of the proposed SAN strategy relies on
adapting the frequency of the Newton iteration computation in
each of the blocks of the grid in function of their local convergence
rate. In the following, the whole computational domain X is
considered to be subdivided into non-overlapping subdomains
denoted Xd for d ¼ 1; . . . ;D : X ¼

SD
d¼1Xd.
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