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a b s t r a c t

In this work we present and compare deterministic and statistical algorithms for efficiently solving large-
scale contaminant source inversion problems. The underlying equations of contaminant transport are
assumed linear but unsteady and defined over complex geometries. The algorithms presented are accel-
erated through discrete adjoint solutions that are pre-computed efficiently in an offline stage, yielding
savings in the time-critical online stage of several orders of magnitude in computational time. In the
deterministic case, adjoints accelerate the application of the Hessian matrix, while in the statistical case,
adjoints are used to directly evaluate samples. To address deterioration of statistical sampling efficiency
for anisotropic posteriors, we present an application of a recently developed ensemble Markov chain
Monte Carlo method. Results for two- and three-dimensional problems demonstrate the feasibility of sta-
tistical inversion for large-scale problems and show the advantage of statistical results over single-point
deterministic results.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Real-time modeling and inversion of contaminant release
events is crucial in applications ranging from environmental safety
monitoring to homeland security. Such events include uninten-
tional industrial or transport accidents, as well as intentional bio-
logical or chemical attacks in urban environments. A successful
response to these scenarios requires rapid and accurate identifica-
tion of the extent of the contamination, inversion of the data to
find the source of the release, and prediction of the subsequent
path of contamination for evacuation and countermeasures. In this
work we address the problem of inversion of the contaminant
source for large-scale calculations under some simplifying
assumptions.

The contaminant source inversion problem is inherently com-
plex: the geometry is often intricate, the flow conditions are uncer-
tain, and the available measurements are limited and noisy.
Computationally, the evolution of the contaminant spread is char-
acterized by a system of partial differential equations that must be
discretized on complex geometries, resulting in millions of
unknowns. Moreover, the problem is generally ill-conditioned in
the sense that small changes in the outputs can cause large

changes in the calculated inputs [1]. This ill-conditioning makes
single-point deterministic calculations, ones that seek the ‘‘best’’
possible answer, not robust, where robustness is measured by
the level of risk associated with using computation in a broader
context such as design or decision making. The lack of robustness
is due to the fact that the ‘‘best’’ input may be only one of many dif-
ferent inputs that produce nearly the same outputs, especially
when measurement error is taken into account.

A statistical approach to the inverse problem, in which proba-
bility distributions instead of single-point estimates are calculated
for the inputs, can be more robust. Probability distributions convey
much more information than a most likely value, and they allow
for informed decisions that make full use of the available data
and associated uncertainties. Statistical approaches often charac-
terize the probability distributions through sampling, which
requires numerous forward simulations. However, sampling can
be expensive, especially when each forward simulation already
taxes computational resources. Thus, for large-scale contaminant
inversions, sampling-based statistical approaches quickly become
prohibitively expensive.

Multiple previous studies have investigated large-scale inverse
problems [2,3], including the societally-relevant application of
contaminant transport [4–9]. The high computational cost of prac-
tical contaminant transport simulations prevents their direct use
for inversion calculations during real-time events. Reducing this
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cost has motivated research into inversion approaches that employ
approximate solution techniques, such as grid coarsening [2,10],
reduced-order modeling [9,11], and stochastic expansions [12],
but the utility and accuracy of these approaches for generating
real-time results in practical, large-scale simulations is yet to be
demonstrated.

To some extent, previous studies have also considered applying
adjoint solutions, or at least output gradients, to uncertainty quan-
tification algorithms. These include gradient-enhanced response
surface construction via least-squares [13] and gradient-enhanced
Kriging [14]; although presented in the context of optimization,
these ideas extend to propagation of input uncertainties [15]. For
statistical inverse problems, the use of output gradients has been
proposed to improve the acceptance ratio in Markov chain Monte
Carlo sampling of anisotropic posteriors [16]. In recent work, these
gradients are computed using finite differences based on the large-
scale model [11] and on cheaper coarse-scale models [17].

2. Forward problem

The forward problem consists of determining system output
quantities through the solution of governing equations given pre-
scribed inputs. In the present case of contaminant transport, the
inputs are parameters that describe the initial condition and the
outputs are contaminant concentration measurements at various
points in space and time.

2.1. Governing equations

Transport of the scalar contaminant field is assumed to be gov-
erned by a convection–diffusion equation,

@u
@t
þr � ð~VuÞ � mr2u ¼ 0; ð1Þ

uð~x;0Þ ¼ u0ð~xÞ; ð2Þ
yk ¼ uð~xk; tkÞ; 1 6 k 6 nout ð3Þ

where uð~x; tÞ is the contaminant concentration, ~Vð~x; tÞ is the velocity
field, m is the diffusion coefficient, t ¼ 0 is the time of release, u0ð~xÞ is
the initial condition, and yk are scalar outputs. The outputs are cal-
culated at spatial positions ~xk and times tk. We allow for multiple
sensors to be located at the same position ~xk and for multiple out-
puts to be recorded at the same time tk. In solving the forward prob-
lem, (1), ~V ; m, and u0ð~xÞ are assumed known, and of interest are the
outputs yk, which require the primal solution uð~x; tÞ for t > 0.

2.2. Discretization

We discretize (1) using a high-order discontinuous Galerkin
(DG) finite element method. DG is chosen for this problem because
it offers several attractive features including straightforward
extension to high order interpolation, a compact stencil, and stabil-
ity for convection-dominated flows. Details of the DG spatial dis-
cretization can be found in previous works [11,18], and here we
only mention that we use pure upwinding for the inviscid flux
and the second form of Bassi and Rebay (BR2) [19] for the viscous
flux. Order p polynomials are used for the spatial approximation on
each element, and in time we employ second-order backward dif-
ferencing (BDF2) with BDF1 on the first time step. Once discretized,
(1) takes the following form,

RiðujÞ �M
3
2

ujþ1 � 2uj þ 1
2

uj�1
� �

þ Rsðujþ1Þ ¼ 0; ð4Þ

where uj 2 RN is the discrete state vector at time tj;1 6 j 6 NT ;u0 is
the discrete initial condition, M 2 RN�N is the block-diagonal mass
matrix, Ri 2 RN is an unsteady residual vector at time

ti;1 6 i 6 NT ;Rs 2 RN is the spatial residual, and N is the number
of spatial degrees of freedom.

We denote by u, without any superscripts, all the unknowns in
the entire time history rolled into one vector, i.e. u 2 RN�Nt . The sys-
tem in (4) can then be written as

Au ¼ Fu0; ð5Þ

where F contains the dependence of the unsteady residual on the
initial condition, only nonzero for the first two unsteady residuals,
and A is a sparse constant matrix that contains the dependence of
the unsteady residual on the state. The outputs in (3) can also be
expressed in terms of the discrete state vector according to

y ¼ Cu ¼ CA�1Fu0; ð6Þ

where y 2 Rnout and where the matrix C consists of the spatial
approximation functions evaluated at the desired sensor locations
and time nodes.

2.3. Initial and boundary conditions

We assume a spatially-Gaussian distribution for the contami-
nant concentration at t ¼ 0;u0ð~xÞ. Thus the initial condition is
described by three parameters: the distribution center, the stan-
dard deviation, and the amplitude. These parameters are rolled
into one vector, l 2 Rnpar , where npar is at most 4 in two dimensions
and 5 in three dimensions. This simplified model is relevant for
many single-point release scenarios and allows us to compare sta-
tistical and deterministic inversion approaches.

No conditions are imposed at outflow boundaries of the
domain, while u ¼ 0 is imposed at inflow boundaries. Our cases
will include geometrical objects simulating buildings, and on their
boundaries a zero flux condition is imposed. Finally, we assume a
spatially-varying but temporally constant velocity field, V

!ð~xÞ,
derived from potential flow. Specifically, we solve Laplace’s equa-
tion for the velocity potential, /ð~xÞ, approximated with p ¼ 4 poly-
nomials in space on the same mesh. We then differentiate the
potential element-wise to obtain the velocity field, V

!¼ r/ on
each element.

3. Inverse problem

Whereas the forward problem concerns calculation of outputs
of a system for given inputs, the inverse problem reverses this rela-
tionship and seeks unknown inputs from measured outputs. In the
present contaminant transport problem, the inputs l are taken as
parameters that describe the initial contaminant distribution, and
the observed outputs �y consist of noisy contaminant concentration
measurements at a limited number of sensors. In this section we
present two approaches for obtaining l given �y: one deterministic
and one statistical.

3.1. Deterministic solution

The inverse problem can be formulated as a deterministic opti-
mization problem of minimizing a cost function that incorporates
the error between observed and simulated outputs along with a
regularization term that is chosen to penalize certain features of
the inputs:

l� ¼ arg min
l
J ðlÞ; J ðlÞ ¼ yðlÞ � �yð ÞT yðlÞ � �yð Þ þ Tðu0ðlÞÞ:

ð7Þ

The expression yðlÞ is shorthand for the chain of operations
expressed in (6). TðlÞ is a regularization term that alleviates ill-con-
ditioning of the inverse problem – the use of parametrized initial
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