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a b s t r a c t

Spectral elements are preferred for accurate prediction of transitional flows, whereas finite elements are
better suited for, possibly non-smooth, deforming solid objects. A new overlapping domain technique is
proposed that couples spectral and finite elements. This technique aims to efficiently capture the
pressure jump and deformation rates of thin solids moving in a fluid. The solid object is fully embedded
in a finite element fluid mesh and the coupling interface is situated in the fluid domain. The technique is
particularly suited for simulation of cardiovascular fluid–structure interaction problems, such as flow
through heart valves. In this paper the overlapping domain technique will be explained and several
numerical benchmarks will be presented to test the fluid–fluid coupling between spectral and finite
elements. The results obtained demonstrate that the technique is accurate and stable.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Computations of transitional flow, a mixture of laminar and
turbulent flow, at intermediate Reynolds numbers (1000 < Re
< 3000) using the finite element method (FEM) require a large
number of degrees of freedom to capture the small scale flow fluc-
tuations. A higher-order spectral element method (SEM) is able to
resolve such fluctuations using fewer degrees of freedom than
FEM. Due to the less compact approximation, spectral elements
are less suitable for describing non-smooth structures within ele-
ments, i.e. structures having a discontinuous slope at one or more
points on the boundary. Especially, in Lagrangian formulations
where geometrical changes have a relatively small length scale
and solid deformations are large. These characteristics are particu-
larly relevant for cardiovascular fluid–structure interaction (FSI)
problems, like flow in the aorta distal to moving aortic valves.
Based on these experiences an FSI method is proposed that accu-
rately computes the small scale fluctuations of transitional flow
using spectral elements and the stresses near as well as inside
the strongly deforming elastic solid using finite elements.

In the context of this paper, FSI methods can be divided into
three different groups: methods with conforming boundaries

(ALE methods [1] and fictitious domain method with adaptive
remeshing [2]), methods with non-conforming boundaries
(immersed boundary method [3], fictitious domain method [4]
and XFEM [5]) and methods with overlapping domains (Chimera
[6] and ALE-Chimera techniques [7]). First, a short overview of
these methods is given.

The Arbitrary Lagrangian–Eulerian (ALE) method has been
developed to combine the advantages of the Lagrangian descrip-
tion, mainly used in structural mechanics, and the Eulerian
description, frequently used in fluid dynamics. The nodes of the
computational mesh are allowed to move in an arbitrary way,
where the displacement of these nodes is taken into account in
the convective term of the fluid equations [1,8–10]. ALE methods
have a conforming fluid–structure interface. A Lagrangian descrip-
tion is applied to the fluid points on this fluid–structure interface
and the grid deformation is, depending on the implementation,
(partly) extended into the fluid domain. This strong fluid–solid
coupling leads to accurate computations of the velocity, pressure
and the interface location [11]. However, if the mesh becomes
highly distorted due to large translations and/or rotations the
method may become inaccurate. Computationally expensive re-
meshing is necessary and interpolation errors may be introduced.

The immersed boundary method is one of the first FSI methods
using non-conforming boundaries. It was developed by Peskin in a
finite difference context to investigate the flow in the heart and
around heart valves [3,12–14]. Once again the (elastic) solid mesh
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is described in a Lagrangian way and the fluid in an Eulerian way,
however, the solid mesh is free to move on top of the fluid mesh.
Local body forces are added to the system of equations in order
to impose the kinematic constraint between the solid boundary
points and the interpolated fluid velocities at the same position.

A similar method, developed in a weighted residual finite
elements context, is the fictitious domain method [4,15]. Lagrange
multipliers are used to couple the fluid and the solid at the inter-
face. In contrast to the immersed boundary method, the local body
forces (Lagrange multipliers) are applied in the weak form of the
momentum equations resulting in a distribution of the forces.

The immersed boundary and the fictitious domain method have
non-conforming boundaries, where the solid boundary does not
align with the edges of the fluid elements. This leads to inaccurate
computations of the velocity (gradients) and pressure [2,16]. To
circumvent this problem, van Loon et.al. developed an adaptive
fictitious domain method with local remeshing to align the fluid
elements with the solid boundary [2].

The immersed boundary, fictitious domain and adaptive ficti-
tious domain method have a ‘fictitious’ fluid domain underneath
the (elastic) solid domain, which has no physical relevance for
the FSI-problem under consideration. For volume occupying struc-
tures, the physics of the structural domain is affected by the
‘fictitious’ fluid domain resulting in constraints for the structural
deformation and leading to artificial viscosity and incompressibil-
ity [17].

To capture locally non-smooth properties, such as discontinu-
ities, the extended finite element method (XFEM) has been
developed [5,18]. In XFEM enrichment functions are added to the
polynomial approximation space of the finite element method in
the neighborhood of a discontinuity. Currently, XFEM is applied
in a wide range of problems for structures and fluids [19]. One of
the applications is the description of discontinuities in the velocity
and stress computations for FSI with non-conforming boundaries
by level set functions [20,21]. The advantages of XFEM are the
removal of the fictitious fluid domain and the flexibility in choos-
ing independently the mesh size of the fluid and the structure
domain [17]. However, numerically the partially integrated ele-
ments can become very small resulting in an ill-conditioned
matrix. Another disadvantage is that the partially integrated ele-
ments require a special adaptive integration scheme. This method
is difficult to combine with SEM due to the loss of the tensor
product formulation. Spectral elements describe larger areas than
finite elements and, therefore, require more accurate integration
techniques on a relatively large area to be described with XFEM
enrichment functions.

Chimera methods can be characterized by the decomposition of
the fluid domain into overlapping subdomains. They have been
developed to simplify mesh generation for FSI-problems [6,22].
The entire fluid domain is covered by a structured background
mesh. Depending on the position of the (moving) structure on
top of the background mesh, nodes are deactivated, a process that
is also called hole cutting [23]. This results in (at least) two inter-
faces, the first is the fluid–fluid interface and the second is the
interface that remains, after removing the nodes in the structured
background mesh. For the last interface, the classical Chimera
method iteratively prescribes Dirichlet boundary conditions which
are derived by interpolation of the previous solution. While for the
fluid–fluid interface Dirichlet, Neumann or Robin boundary condi-
tions can be prescribed [7,23]. A sequential iteration over the over-
lapping subdomains is performed to obtain a converged solution
on the whole fluid domain.

The advantage of the Chimera method is its flexibility for com-
puting moving bodies in fluids using a boundary fitted mesh
between the fluid and (moving) solid. It allows the generation of
independent meshes consisting of different element types, local

mesh refinement and/or a different orientation of the elements
[23]. Gamnitzer and Wall developed the ALE-Chimera method to
compute fluid–structure interaction for (large) deformations of
flexible structures in a fluid [7]. The disadvantages of the iterative
fluid–fluid coupling are the increased computational costs and a
loss of accuracy because of the velocity interpolation [17].

The goal of this study is to propose a new overlapping domain
technique to couple spectral and finite elements in a monolithic
FSI-method, which solves the fluid and solid equations simulta-
neously using one system matrix. The developed technique is
based on the ideas of the Chimera method. The spectral element
method is able to obtain accurate flow computations for transi-
tional flows [24,25], whereas finite element methods are better
suited for describing the possibly non-smooth elastic deformation
of an elastic solid. The technique proposed aims to efficiently cap-
ture the pressure jump and deformation rates of thin solids moving
in a fluid. In this overlapping domain technique, an additional fluid
layer consisting of finite elements is conformally coupled to the
elastic solid described by finite elements. This implies that the cou-
pling between the finite element and the spectral element approx-
imation moves to the fluid domain. Hence, a special fluid–fluid
coupling is needed which will be described in this paper together
with benchmark computations to demonstrate that the fluid–fluid
coupling is accurate and stable.

This paper is structured as follows. Section 2 introduces the
governing equations and Section 3 presents and explains the
overlapping domain technique coupling SEM and FEM. Section 4
shows the results of different numerical test computations to com-
pare SEM with FEM and to demonstrate the accuracy and stability
of the proposed fluid–fluid coupling between SEM and FEM.
Subsequently, the obtained results are evaluated and discussed in
Section 5. Finally, Section 6 gives the main conclusions and
directions for future work.

2. Governing equations

In this study fluid problems with a fluid–structure interface Cfs

are considered, see Fig. 1, where the structure is a fixed rigid solid
Xs. The fluid can be described by the incompressible Navier–Stokes
equations in an Eulerian formulation

q
@v
@t
þ qv � rv ¼ r � rþ f ; ð1Þ

r � v ¼ 0; ð2Þ

for the fluid domain Xf . In these equations v is the fluid velocity, q
is the fluid density, f a volumetric body force and r the Cauchy
stress tensor which is given by the constitutive equation for a
Newtonian fluid

r ¼ �pI þ 2gDðvÞ; ð3Þ

where p is the pressure, g the dynamic viscosity and D the rate of
deformation tensor

Fig. 1. A general visualization of the fluid domain Xf and the fixed solid domain Xs ,
with Cfs the boundary between the fluid and the structure, CD and CN the
boundaries where respectively the Dirichlet and Neumann boundary conditions are
imposed.
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