
A portable OpenCL-based unstructured edge-based finite element
Navier–Stokes solver on graphics hardware

R. Rossi a,b, F. Mossaiby c,⇑, S.R. Idelsohn a,d

a Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Barcelona, Spain
b UPC, BarcelonaTech, Campus Norte UPC, 08034 Barcelona, Spain
c Department of Civil Engineering, Faculty of Engineering, University of Isfahan, 81744-73441 Isfahan, Iran
d Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

a r t i c l e i n f o

Article history:
Received 18 December 2012
Received in revised form 27 March 2013
Accepted 16 April 2013
Available online 2 May 2013

Keywords:
Unstructured grids
Navier–Stokes
Edge-based
GPU
OpenCL
OpenMP

a b s t r a c t

The rise of GPUs in modern high-performance systems increases the interest in porting portion of codes
to such hardware. The current paper aims to explore the performance of a portable state-of-the-art FE
solver on GPU accelerators. Performance evaluation is done by comparing with an existing highly-opti-
mized OpenMP version of the solver. Code portability is ensured by writing the program using the
OpenCL 1.1 specifications, while performance portability is sought through an optimization step per-
formed at the beginning of the calculations to find out the optimal parameter set for the solver. The
results show that the new implementation can be several times faster than the OpenMP version.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The solution of the incompressible Navier–Stokes problem,
which describes the motion of Newtonian fluids, represents an
open challenge for the numerical community. Given the impor-
tance of the problem, a large effort was spent over the years in
the development of dedicated numerical techniques to improve
the speed and the accuracy of the solution process. The use of lat-
tice-based approaches such as the Finite Differences or Lattice-
Boltzmann schemes lead to the development of highly-efficient
schemes, which can deal effectively with very large computational
meshes. The relative simplicity of the computational kernels to-
gether with the highly regular structure of the computations were
found to fit perfectly to the architectural needs of modern acceler-
ators. Various authors (see e.g. [1]) were able to achieve perfor-
mance boosts by developing optimized kernels with respect to
their single-CPU counterparts. Although local adaptivity was
shown to be very effective, any modification with respect to the
simple approach of using regular meshes typically leads to a de-
crease in the computational efficiency and a drop in the perfor-
mance boost for hardware accelerated algorithms. Furthermore,

all of such techniques find major limitations in dealing with com-
plex geometries and curved boundaries.

Unstructured discretization of the space, typically based on tet-
rahedral meshes, represent a possible solution for such problems.
The strength of such approaches is the possibility of using body-fit-
ted meshes and spatially adapted discretizations of the space. The
price paid to achieve this advantage is an increasingly irregular
computational pattern which reflects in a variable number of edges
surrounding the nodes of the computational mesh. Such a situation
does not represent a major problem for cache-based processors
used in conjunction with OpenMP or MPI programming paradigms,
since computations can be organized so to take full advantage of
the cache, while the number of parallel OpenMP threads is typi-
cally kept low. However, prior experiences of the authors [2], con-
firmed by the reports of others [3], seem to suggest that only low
speedups can be achieved with respect to the CPU-only solutions.

The current paper aims to examine the OpenCL porting of an
OpenMP edge-based solver so as to identify and discuss the perfor-
mance bottlenecks. The paper starts with a brief description of the
solution algorithm used, followed by the presentation of the data
structure employed and of the structure of the parallel computa-
tions. An effort is performed to make the discussion as implemen-
tation-independent as possible. The impact of using black-box
solvers (such as the ViennaCL library [4]) in comparison to in-
house optimized implementations for the solution of the implicit
pressure step is evaluated. Benchmarking data over platforms with

0045-7930/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compfluid.2013.04.017

⇑ Corresponding author. Tel.: +98 (311) 793 4015; fax: +98 (311) 793 2089.
E-mail addresses: rrossi@cimne.upc.edu (R. Rossi), mossaiby@eng.ui.ac.ir (F.

Mossaiby), sergio@cimne.upc.edu (S.R. Idelsohn).

Computers & Fluids 81 (2013) 134–144

Contents lists available at SciVerse ScienceDirect

Computers & Fluids

journal homepage: www.elsevier .com/locate /compfluid

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.compfluid.2013.04.017&domain=pdf
http://dx.doi.org/10.1016/j.compfluid.2013.04.017
mailto:rrossi@cimne.upc.edu
mailto:mossaiby@eng.ui.ac.ir
mailto:sergio@cimne.upc.edu
http://dx.doi.org/10.1016/j.compfluid.2013.04.017
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid

different software and hardware configurations are presented so as
to allow a broader comparison. Finally the impact of a run-time
optimization step will be evaluated. The proposed implementation
is open-source and freely available as a part of the Kratos frame-
work [5]. More information can be found in the Wiki page for Kra-
tos [6].

2. Finite element formulation

Between the many existing possibilities for the solution of Na-
vier–Stokes problem, we use a fractional-step approach. In this
scheme we solve explicitly the momentum equation (using a 4-
step Runge–Kutta scheme) and implicitly the pressure correction
step. A detailed discussion of the algorithm is presented in [7] for
the incompressible case and in [8] for the solution of Low-Mach
compressible problems.

In order to understand the basic concepts of the method, we
may start by considering the strong form of the Navier–Stokes
equations, written for the constant–density case

@u
@t
þ u � ru� mDuþrp ¼ b ð1Þ

r � u ¼ 0 ð2Þ

where u is the velocity, m is the kinematic viscosity, p is the pressure
and b is the applied body force. By applying the standard Galerkin
approach, using the test functions v and q, we obtain

ðv;bÞ � v;
@u
@t

� �
� ðv;u � ruÞ þ ðv; mDuÞ � ðv;rpÞ ¼ 0 ð3Þ

ðq;r � uÞ ¼ 0 ð4Þ

Eqs. (3) and (4) define the discrete equivalent of the original
continuous problem. Since our goal is to use low-order simplicial
meshes and equal order velocity–pressure pairs, a stabilized for-
mulation is needed to allow the solution of the resulting mixed
(u,p) problem. Different possibilities exist for this purpose [9].
We favor here the use of the so-called split-OSS approach [10],
which is known to work properly in a wide range of applications.
FIC stabilization [11,12] could be used as an alternative since it
leads to very similar discrete forms. Since a discussion of the prop-
erties of the chosen stabilization method falls outside the scope of
this work, we refer the reader to the literature for a detailed
description of the properties of such technique. In the following
we express the stabilization terms as the non linear operators
S(u) :¼ (u � rv, sP\(u � ru)) and Sp(p) :¼ (q, sP\(rp)) where P\

represents the orthogonal projection operator and s is a suitably
defined scalar. Reader should check [10] or [14] for a detailed
description of such terms. The resulting final form of the discrete
equations is

M
@u
@t
þ ½CuÞ � mL þ SðuÞ�uþ $p ¼ F ð5Þ

Duþ Spp ¼ 0 ð6Þ

where M is the lumped mass matrix and

$IJ :¼
Z

X
NIrNJdX ð7Þ

GIJ :¼
Z

X
rNINJdX ð8Þ

DIJ :¼
Z

X
NIrNT

J dX ¼ $T
IJ ð9Þ

LIJ :¼
Z

X
rNI � rNJdX ð10Þ

are linear operators obtained by integrating over the domain the fi-
nite element shape functions indicated with N. The convection

operator C(u) is a non-linear term which depends on the velocity.
It can be defined as

CIJ :¼
Z

X
NIu � rNT

J dX ð11Þ

Eq. (5) has three components in 3D. This is reflected in G and D
being respectively 3 � 1 and 1 � 3 matrices for each couple of indi-
ces IJ of the FE mesh. The description is completed by the exact def-
inition of the stabilization terms. A detailed description of such
terms, particularized to the Split-OSS case, and using the same
notation used here can be found in [13]. Choosing a fractional-step
approach implies approximating the original system of equations
as

M
@û
@t
þ ½CðûÞ � mL þ SðûÞ�ûþ $pn ¼ F ð12Þ

M
@ðu� ûÞ

@t
þ Dt

2
$ðpnþ1 � pnÞ ¼ 0 ð13Þ

Duþ Sppnþ1 ¼ 0 ð14Þ

where û is the so-called fractional-step velocity. The fractional-step
velocity is modified at each step so that its value in the past coin-
cides with the velocity un, that is, ûn ¼ un.

Since Eq. (12) is still continuous in time, we have different op-
tions in choosing a time integration scheme to properly advance
in time the momentum equation (the first of the three equations
above). As we stated previously, our choice in the current work is
the use of a 4th order Runge–Kutta scheme. As observed in
[7,14], by making the fundamental approximation of considering
the end-of-step velocity to depend linearly on the pressure despite
the non-linearity of the convection terms, we may conclude that
the end-of-step velocity can be expressed as

u ¼ ûþ Dt
2

M�1$ðpnþ1 � pnÞ ð15Þ

where pn+1 and pn indicate respectively the new value of the pres-
sure (at time tn+1), and its latest known value (at time tn). Substitut-
ing symbolically this expression into the mass conservation
equation (Eq. (14)) and replacing the discrete Laplacian DM�1G with
the continuous one L we obtain the equation

Dt
2

Lðpnþ1 � pnÞ þ Sppnþ1 ¼ Dû ð16Þ

The above equation needs to be solved for the pressure. This
ultimately leads to a solution strategy articulated in the following
steps:

1. Solve Eq. (12) for the fractional-step velocity, û.
2. Solve Eq. (16) for the pressure, pn+1.
3. Solve Eq. (15) for the end-of-step velocity, u.

From a practical point of view, the equation to be solved in Step
1 is mathematically equivalent to the solution of a convection–dif-
fusion equation for each of the velocity components. The pressure
gradient and the external pressure term act here as source terms.
The idea we leverage in this work is to take advantage of the effi-
cient edge-based data structure described in [13,14] to allow the
efficient computation of the fractional-step velocity.

The essential idea is that, basing on a slight approximation of
the viscous and convective term, it is possible to approximate all
of the operators described in terms of constant operators. Such
operators can be computed at the beginning of the calculations
and stored for each edge IJ of the finite element mesh, making
the approach very appealing for use on GPU since the operators
can be computed on the CPU and transferred to the GPU memory
for later usage.

R. Rossi et al. / Computers & Fluids 81 (2013) 134–144 135

Download English Version:

https://daneshyari.com/en/article/762062

Download Persian Version:

https://daneshyari.com/article/762062

Daneshyari.com

https://daneshyari.com/en/article/762062
https://daneshyari.com/article/762062
https://daneshyari.com

