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a b s t r a c t

Using Mathematica package, we derive analytical closed-form expressions for the shear and the bulk vis-
cosity coefficients in multicomponent relativistic gases with constant cross sections, being the relativistic
generalization for the hard spheres model. Some of them are cumbersome and require symbolic manip-
ulations in an algebraic package. The constant cross sections are of the elastic processes, while the inelas-
tic (or number-changing) processes (collisions or decays) are considered only partly. As examples, we
find explicit expressions of the correct single-component first-order shear viscosity coefficient and some
explicit analytical results for the binary mixture. These formulas have numerous applications in approx-
imate nonequilibrium descriptions of gases of particles or quasiparticles with averaged (temperature
dependent) cross sections. In addition to this, we present formulas for collision rates and some other
related formulas.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The bulk and the shear viscosity coefficients are transport coef-
ficients which enter the hydrodynamic equations, and, thus, are
important for studying of nonequilibrium evolution of any thermo-
dynamic system. In this regard, another way of dissipative non-
equilibrium description can be mentioned [1,2]. In rarefied gases
of particles or quasiparticles with short-range interactions the vis-
cosities can be calculated in a perturbative regime.1 The leading
contribution can be obtained in the framework of the Boltzmann
equation (BE), derivable within the BBGKY hierarchy with the
well-known assumption for correlations [4] (Section 16). The BE’s
justification from first principles and the next-to-leading order cor-
rections have been obtained in calculations for weakly coupled
quantum field theories by the Kubo (or Green–Kubo2) formulas [7–
10,3].3

The aim of this paper is to derive analytical closed-form
(through special and/or elementary functions) expressions for the
shear and the bulk viscosities in multicomponent relativistic gases
with constant cross sections, and similarly for the collision rates
and some other related quantities. Previously the single-compo-
nent viscosities were obtained in [12] (we correct the shear viscos-

ity), being the relativistic generalization of the ones in the hard
spheres model [4] (Sections 8 and 10).

The structure of the paper is the following. Section 2 contains
some comments on cross sections, connection with the hard
spheres model, most of the used designations and methodology.
In Section 4 we present explicit analytical results for the single-
component gas, including the ones for the nonequilibrium distri-
bution function (DF) and some analysis for the inelastic processes.
We also present some explicit expressions for the binary mixture
and the collision rates (and related quantities) in the multicompo-
nent mixture. In Section 5 we discuss significance and applications
of the obtained formulas. In Section 6 we state the conclusions.
Transformations of collision brackets, being the 12-dimensional
integrals, which enter the viscosities, and some analytical formulas
for them can be found in Appendix A.

2. Methodology

2.1. Some comments on cross sections and effective radiuses

For compatibility with previously obtained results and from
practical considerations we want to introduce an effective radius
r through the hard core repulsion model or the model of hard
spheres. The differential scattering cross section for this model
can be inferred from the problem of scattering of point particle
on the spherical potential UðrÞ ¼ 1 if r 6 a and UðrÞ ¼ 0 if r > a
[13]. In this model the differential cross section is equal to a2=4.
To apply this result to the gas of hard spheres with the radius r
one can notice that the scattering of any two spheres can be
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1 In non-abelian gauge theories there are also contributions from non-perturbative
effects [3].

2 The Kubo formulas are distinguished from the Green–Kubo formulas, e.g., in [5,6].
3 There is, however, a special important issue connected with particle number

conservation/nonconservation for the bulk viscosity [11].
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considered as the scattering of the point particle on the sphere of
the radius 2r, so that one should take a ¼ 2r. The total cross section
rtot is obtained after integration over the angles of the r2dX, which
results in the rtot ¼ 4pr2. For collisions of hard spheres of different
radiuses one should take a ¼ rk þ rl or replace the r on the rkþrl

2 :

rtot;kl ¼ pðrk þ rlÞ2: ð1Þ

The relativistic generalization of this model is the constant (not
dependent on the scattering energy and angle) differential cross
sections model.

The hard spheres model is classical, and connection of its cross
sections to cross sections, calculated in any quantum theory, is
needed. For particles, having a spin, the differential cross sections
averaged over the initial spin states and summed over the final
ones will be used.4 If colliding particles are identical and their differ-
ential cross section is integrated over the momentums (or the spatial
angle to get the total cross section) then it should be multiplied on
the factor 1

2 to cancel double counting of the momentum states.
These factors are exactly the factors ckl next to the collision integrals
in the BEs (17). The differential cross sections times these factors will
be called (adopting the terminology mentioned in [14]) the classical
differential cross sections.

2.2. The system of the BEs and its solution

The methodology in this paper goes close to the ones in the
monograph [14], though with some differences (including correc-
tions of a couple of typos) and generalizations. We find it very
instructive to include compilation of some pieces of the methodol-
ogy (some of which are absent in the [14]) for convenience and
completeness, adding some comments and tacitly answering some
questions. We use units �h ¼ c ¼ kB ¼ 1 throughout the paper by
default. Conversion factors can be found, e.g., in [15]. Let’s start
from some definitions. We use the designations of the [14] mostly.
Multi-indices k; l;m;n will be used to denote particle species with
certain spin states. Indexes k0; l0;m0;n0 will be used to denote parti-
cle species without regard to their spin states (and run from 1 to
the number of the particle species N0) and a; b to denote conserved
quantum numbers.5 Quantifiers 8 with respect to the indexes are
omitted in the text where they may be needed, which will not result
in a confusion. As nothing depends on spin variables, one has for
every sum over the multi-indexesX

k

� � � ¼
X

k0
gk0 � � � ; ð2Þ

where gk0 is the spin degeneracy factor. The following assignments
will be used:

n �
X

k

nk �
X

k0
nk0 ; na �

X
k

qaknk; xk �
nk

n
; xa �

na

n
;

l̂k �
lk

T
; l̂a �

la

T
; zk �

mk

T
; pl

k �
pl

k

T
; sk �

pl
k Ul

T
; ð3Þ

where qak denotes values of conserved quantum numbers of the ath
kind of the kth particle species. Everywhere the particle number
densities are summed the spin degeneracy factor gk0 appears and
then gets absorbed into the nk0 or the xk0 by the definition. All other

quantities with primed and unprimed indexes do not differ, except
for rates, the mean free times and the mean free paths defined in
Section 4.3, the ckl commented below, the coefficients Ars

k0 l0 ;C
rs
k0 l0

and, of course, quantities, whose free indexes set the indexes of

the particle number densities nk. The assignment
R d3pk

p0
k
�
R

pk
will

also be used for compactness somewhere.
The particle number flows are6

Nl
k ¼

Z
d3pk

ð2pÞ3p0
k

pl
k fk; ð4Þ

where the assignment fkðpkÞ � fk is introduced. The energy–
momentum tensor is

Tlm ¼
X

k

Z
d3pk

ð2pÞ3p0
k

pl
k pm

kfk: ð5Þ

The local equilibrium DFs are

f ð0Þk ¼ eðlk�pl
k

UlÞ=T ; ð6Þ

where lk is the chemical potential of the kth particle species, T is
the temperature and Ul is the relativistic flow 4-velocity such that
UlUl ¼ 1 (with a frequently used consequence Ul@mUl ¼ 0). The
local equilibrium implies perturbation of the independent thermo-
dynamic variables and the flow velocity over a global equilibrium
(see just below) such that they can depend on the space–time coor-
dinate xl. We assume chemical equilibrium, which implies that the
particle number densities are equal to their global equilibrium
values. We call the global equilibrium as the time-independent
stationary state with the maximal entropy.7 The global equilibrium
state of an isolated system can be found by variation of the total
nonequilibrium entropy functional [16] (Section 40) over the DFs
with condition of the total energy and the total net charges
conservation:

U½f � ¼
X

k

Z
d3pkd3x

ð2pÞ3
fkð1� ln f kÞ �

X
k

Z
d3pkd3x

ð2pÞ3
bp0

kfk

�
X
a;k

kaqak

Z
d3pkd3x

ð2pÞ3
fk; ð7Þ

where b; ka are the Lagrange coefficients. Equating the first variation
to zero, one easily gets the function (6) with Ul ¼ ð1;0; 0;0Þ; b ¼ 1

T

and

lk ¼
X

a

qakla; ð8Þ

where la ¼ ka are the independent chemical potentials coupled to
the conserved net charges.

With fk ¼ f ð0Þk , substituted in the (4) and the (5), one gets the
leading contribution in the gradients expansion of the particle
number flow and the energy–momentum tensor:

Nð0Þlk ¼ nkUl; ð9Þ
Tð0Þlm ¼ �UlUm � PDlm; ð10Þ

where the projector

Dlm � glm � UlUm; ð11Þ

is introduced. Above nk is the ideal gas (IG) particle number density,
� is the IG energy density, P is the IG pressure [14] (Chapter II, Sec-
tion 4). Also, the following assignments are used:

4 It’s assumed that particle numbers of the same species but with different spin
states are equal. If this were not so, then in approximation in which the spin
interactions are neglected and probabilities to have certain spin states are equal the
numbers of the particles with different spin states would be approximately equal in
the mean free time. With equal particle numbers their DFs are equal too. This allows
one to use the summed over the final states cross sections in the BEs.

5 In systems with only the elastic collisions each particle species have their own
‘‘conserved quantum number’’, equal to 1.

6 The þ;�;�;� metric signature is used throughout the paper.
7 The kinetic equilibrium implies that the momentum distributions are the same as

in the global equilibrium. Thus, a state of a system with both the pointwise (for the
whole system) kinetic and the pointwise chemical equilibria is the global equilibrium.
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