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a b s t r a c t

In this paper, optimization of rear end of a simplified car model is performed considering aerodynamic
and acoustic objectives. Slant angle, rear box angle, boat tail angle, and rear box length are considered
as main variables of the rear end. For numerical simulation of flow around the model and studying aero-
dynamic noise, realizable turbulent model and broad band noise model are used, respectively. Simulation
results are validated by the experimental results reported in the literature. To reduce number of simula-
tions to reach optimum values of parameters, Taguchi method has been used. The results of Taguchi are
in good agreement with simulation results. Then, the results of Taguchi have been used to obtain a rela-
tion between parameters and objectives employing Artificial Neural Networks. Optimization of the model
has been conducted by the Neural Network and Multi Objective Genetic Algorithm methods. Finally, flow
around the optimized model has been studied by numerical simulation and results have been reported.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

While driving, air flowing around the vehicle leads to drag and
lift forces and aerodynamic noise. Significant efforts have been
made to study flow around vehicles to optimize the shape to im-
prove drawbacks of drag and aerodynamic noise. Krajnovic [1] used
Response Surface Method (RSM) for aerodynamic optimization of
flow around a train. Global optimization of drag coefficient and
crosswind stability was obtained by application of Genetic Algo-
rithm on polynomials of response surface methodology. Parussini
et al. [2] implemented Multi-Objective Genetic Algorithm for
designing airfoils considering performance and stability objectives.
The number of simulations was reduced utilizing a response surface
based on statistics. Chiba et al. [3] reported Multi-objective design
optimization of a two-dimensional shielding effect for reduction
of aircraft engine fan noise. The Kriging-based response surface
model was applied to reduce the optimization cost. Tang et al. [4]
used Taguchi Robust Design Method for dealing with aerodynamic
shape optimization problems with uncertain operating conditions.

Thompson et al. [5] optimized drag and ventilation characteris-
tics of small livestock trailers by performing CFD simulations for

combinations of design variables defined by an Optimal Latin
Hypercube Design of Experiments. Hai-jun and Ya-feng [6] utilized
Artificial Neural Networks (ANN) trained by a relatively small
number of CFD simulations for aerodynamic optimization. It was
found that ANN approximation reduces cost of computations.
Beigmoradi and Ramezani [7] performed drag minimization of a
simplified car model, in which Robust Parameter Design (RPD)
was found to be the appropriate method for finding optimum level
of parameters in CFD problems.

In this work, a simplified vehicle model with four parameters,
namely slant angle, rear box length, rear box angle, and boat tail
angle is studied. Each parameter is considered in five levels and
in order to reduce cost of computations, Taguchi method based
on the Robust Parameter Design is used. A neural network is
trained by Taguchi results to estimate the relation between objec-
tives and parameters. Finally, Multi-Objective Genetic Algorithm is
applied to optimize the model. Fig. 1 shows the aerodynamic and
acoustic optimization process implemented in this research.

2. Background theory

2.1. Fluid flow equations

In this paper, flow around the model is considered to be three
dimensional and incompressible. Therefore, Navier–Stokes
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equations with a turbulence model are applied to solve the prob-
lem. Cartesian tensor form of Navier–Stokes equations can be writ-
ten as follow:

@

@xi
ðquiÞ ¼ 0 ð1Þ

where q is density and ui is velocity component in xi direction. In
turbulent flow, the solution variables in Navier–Stokes equations
can be written as the sum of mean and fluctuating terms. The veloc-
ity components can be represented as Eq. (2).

u ¼ �uþ u0; v ¼ �v þ v 0; w ¼ �wþw0 ð2Þ

where �u; �v; �w and u0, v0, w0 are the mean and fluctuating velocity
components, respectively. In addition, pressure and other scalar
quantities can be represented as follow:

k ¼ �kþ k0 ð3Þ

where k represents a scalar quantity such as pressure.
Substituting Eqs. (2) and (3) into Navier–Stokes equations and

taking a time average provides the ensemble-averaged momentum
equations as in Eq. (4).
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where dij is Kronecker delta coefficient (dij = 0 if i – j, dij = 1 if i = j).
Eq. (4) is called Reynolds-averaged Navier–Stokes (RANS) equations
and �qu0iu

0
j term is Reynolds stresses.

The Boussinesq approach is a common method to relate the
Reynolds stresses to the mean velocity gradients [8]. This approach
can be written as Eq. (5).
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In the k–e model, eddy viscosity, lt, is computed as a function of
Turbulence Kinetic Energy, k, and Turbulence Dissipation Rate, e,
by solving two additional transport equations for k and e. Transport
equations for k and e in the realizable k–e are:
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Nomenclature

ANN Artificial Neural Networks
GA Genetic Algorithm
DOE Design of Experiment
CFD Computational Fluid Dynamics
RPD Robust Parameter Design
RANS Reynolds Averaged Navier – Stokes
SNR Signal to Noise Ratio
MSD mean square deviations
u x-component of velocity vector (m/s)
v y-component of velocity vector(m/s)
w z-component of velocity vector (m/s)
p static pressure
BX, BY, BZ body forces
k Turbulence Kinetic Energy
Ck creation of Turbulence Kinetic Energy due to the mean

velocity gradients
Cb creation of Turbulence Kinetic Energy Due to Buoyancy
Qm portion of the fluctuating dilatation

l length scale (m)
a0 speed of sound (m/s)
PA total acoustic power (w)
Pref reference acoustic power
Cd drag coefficient
Fd total drag forces
A projected area
u1 upstream bulk velocity
Rp parameter range

Greek abbreviations
q density of air
e Turbulence Dissipation Rate
s Shear Stress
lt eddy viscosity
rk Turbulent Prandtl Number for k
rs Turbulent Prandtl Number for e
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Fig. 1. Flowchart of aerodynamic and acoustic optimization process.
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