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a b s t r a c t

In this short communication, numerical solutions are obtained for the steady Bödewadt flow of a viscous
fluid subject to partial slip boundary conditions. The resulting system of nonlinear and fully coupled sim-
ilarity equations are integrated accurately by a finite difference scheme and by the Keller-box method. It
is observed that slip has a prominent effect on the velocity field, reducing drastically the axial velocity
and the pressure. Moreover, the torque required to maintain the disk at rest decreases for increasing val-
ues of slip.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The steady laminar flow of a viscous incompressible fluid near a
rotating disk, originally solved by Von Kármán [1], is one of the few
problems in fluid dynamics for which the Navier–Stokes equations
admit an exact solution. The twin problem arising when the fluid
rotates with a uniform angular velocity at a large distance from a
stationary disk, is known as the Bödewadt flow. This problem, for
a viscous incompressible fluid, also admits an exact solution for
the Navier–Stokes equations, subject to the conventional no-slip
boundary conditions, as shown theoretically by Bödewadt [2].
The flow is characterized by the radial pressure gradient being bal-
anced by the centrifugal forces. Fluid flows towards the axis of
rotation and swepts upwards. The boundary layer, which develops
on the disk, produces a secondary flow of stagnation type in the
von Kármán case and of wake type in the Bödewadt problem.
Batchelor [3] suggested that for large Reynolds numbers, the ro-
tor–stator flow consists of boundary layers on each disk separated
by a core of fluid rotating as a solid body. It can be seen as the con-
nection of a Von Kármán flow along the rotor with a Bödewadt
flow along the stator. Nowadays, this type of flow still receives a
constant attention by the introduction of more complex and com-

bined phenomena: heat transfer, non-Newtonian fluid [5,6], mag-
netic field or partial slip.

All the studies mentioned above admit no-slip condition on
the walls, which is more a hypothesis than a condition deduced
from any principle. Evidence of the fluid slip on a solid surface
has been reported by Matthews and Hill [7]. For example, if
one considers a zero-thickness disk admitting a stress-free condi-
tion on its surface and rotating around its axis, it does not modify
the motion of the surrounding fluid, which would remain at rest.
It confirms an intuitive result that the boundary condition on the
disk plays a key role on the fluid motion. Slip condition has also
some industrial relevance when the fluid is composed of emul-
sions, suspensions, foams or polymer solutions. In other situa-
tions where the wall surface is rough, the no-slip boundary
condition also becomes impractical to apply exactly. The proper
boundary condition is then well described by the general Navier’s
condition [8], where the amount of relative slip is proportional to
the local shear stress through the slip length(es). If the character-
istic scale of roughness is small compared to the boundary layer
thickness, the no-slip condition may be well approximated by a
partial slip condition [8]. Miklavčič and Wang [9] have considered
the von Kármán swirling flow of a viscous fluid with slip bound-
ary condition. More recently, Sherwood [10] solved the flow due
to a zero-thickness disk rotating around its axis by the use of
Hankel transforms. The combined effects of slip and non-Newto-
nian cross-viscous parameter on the rotating flows past free
rotating disks have been thoroughly studied by Sahoo [11] and
Sahoo and Poncet [12].
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A literature survey shows that no particular attention has been
paid to the effects of slip on the Bödewadt flow of a viscous fluid.
The present work is devoted to study the effects of slip on the stea-
dy Bödewadt flow of a viscous fluid. A second order finite differ-
ence method and an effective Keller box method are used to
solve the fully coupled and highly nonlinear differential equations.
The present paper is a step forward in the computation of the ro-
tor–stator flow with partial slip effects to establish reference solu-
tions for numerical benchmarks.

2. Formulation of the problem

One considers a viscous fluid occupying the space z > 0 over
an infinite stationary disk, which coincides with z ¼ 0. The
motion is due to the rotation of the fluid like a rigid body with
constant rotation rate X at a large distance from the disk. One
shall assume that the principal directions of the roughness are
the radial and azimuthal, i.e. a concentrically grooved disk [9],
but the results could also apply to the case of a randomly
rough disk. The flow is described in the cylindrical polar coordi-
nates ðr;/; zÞ with the rotational symmetry, @

@/ � 0. Let
V ¼ ðu;v ;wÞ be the fluid velocity vector. Considering the usual
boundary layer approximations and using the similarity trans-
form [1]:

u¼ rXFðfÞ; v ¼ rXGðfÞ; w¼
ffiffiffiffiffiffiffi
Xm
p

HðfÞ; z¼
ffiffiffiffi
m
X

r
f; p�p1 ¼�qmXP

ð1Þ

the equations of continuity and motion take the form [2,4]:

dH
df
þ 2F ¼ 0; ð2Þ

d2F

df2 � H
dF
df
� F2 þ G2 ¼ 1; ð3Þ

d2G

df2 � H
dG
df
� 2FG ¼ 0; ð4Þ

dP
df
� H

dH
df
þ d2H

df2 ¼ 0 ð5Þ

The no-slip boundary conditions in terms of similarity variables
become,

f ¼ 0 : F ¼ 0; G ¼ 0; H ¼ 0;
f!1 : F ! 0; G! 1; P ! 0: ð6Þ

A generalization of the Navier’s partial slip condition [8,9] gives, in
the radial and azimuthal directions:

ujz¼0 ¼ k1srzjz¼0 ð7Þ
v jz¼0 ¼ k2s/zjz¼0 ð8Þ

where k1; k2 are the slip coefficients, and srz; s/z are the physical
components of the stress tensor. One defines the dimensionless slip
coefficients as:

k ¼ k1

ffiffiffiffi
X
m

r
l; g ¼ k2

ffiffiffiffi
X
m

r
l: ð9Þ

With the help of the transformations (1), the corresponding partial
slip boundary conditions (7) and (8) become:

Fð0Þ ¼ kF 0ð0Þ; Gð0Þ ¼ gG0ð0Þ; Hð0Þ ¼ 0; ð10Þ

Fð1Þ ! 0; Gð1Þ ! 1; Pð1Þ ! 0:

3. Finite difference solution

The finite difference method (FDM) has been used to solve the
system of coupled nonlinear Eqs. (2)–(5) subject to the slip bound-
ary conditions (10). The semi-infinite domain [0,1) is replaced by
a finite domain ½0; f1Þ, with f1 sufficiently large so that the numer-
ical solution closely approximates the terminal boundary condi-
tions. One approximates the functions and their derivatives by
their finite difference counterparts to solve a sequence of linear
systems.

1. One solves:

F 00 � HðkÞF 0 ¼ ðFðkÞÞ
2
� ðGðkÞÞ

2
þ 1 ð11Þ

using the derivative boundary conditions (10) and denotes the solu-
tion of (11) as eF ðkþ1Þ. To obtain convergence, one defines Fðkþ1Þ by the
following smoothing formula:

Fðkþ1Þ ¼ a1
eF ðkþ1Þ þ ð1� a1ÞeF ðkÞ; 0 6 a1 6 1 ð12Þ

2. The same procedure is successively used for the G and H com-
ponents and then for the pressure P:

G00 � HðkÞG0 ¼ 2Fðkþ1ÞGðkÞ ð13Þ

Gðkþ1Þ ¼ a2
eGðkþ1Þ þ ð1� a2ÞeGðkÞ; 0 6 a2 6 1 ð14Þ

H0 ¼ �2Fðkþ1Þ ð15Þ

Hðkþ1Þ ¼ a3
eHðkþ1Þ þ ð1� a3ÞeHðkÞ; 0 6 a3 6 1 ð16Þ

P0 � 2F 0 ¼ �2Hðkþ1ÞFðkþ1Þ ð17Þ

Pðkþ1Þ ¼ a4
eP ðkþ1Þ þ ð1� a4ÞeP ðkÞ; 0 6 a4 6 1 ð18Þ

3. The iterations start with suitable initial guesses Fð0Þ;Gð0Þ and
Hð0Þ, borrowed from the work by Sahoo and Poncet [12]. If

ðFðkþ1Þ; FðkÞÞ, ðGðkþ1Þ;GðkÞÞ, ðHðkþ1Þ;HðkÞÞ and ðPðkþ1Þ; PðkÞÞ are close
enough to each other, one stops, otherwise one sets k ¼ kþ 1
and goes back to step 1.

In order to solve the above system of equations by finite differ-
ence method, we introduce a grid in 0 6 f 6 f1 by dividing it into n
equal parts with a mesh size h equal to 0.01. It has been verified
that this value guarantees a grid independent solution. One
approximates the derivatives by:

F 0ðfiÞ ¼
Fiþ1 � Fi�1

2h
; F 00ðfiÞ ¼

Fiþ1 � 2Fi þ Fi�1

h2 ; i ¼ 1;2; . . . n� 1

ð19Þ

In order to obtain a diagonally dominant linear algebraic sys-
tem for Eqs. (11) and (13), F 0 and G0 are discretized by backward
difference approximations as Hðkþ1Þ

i > 0 for Bödewadt flow. One
obtains:

½1þ hHðkÞi �Fi�1 þ ½�2� hHðkÞi �Fi þ Fiþ1 ¼ h2½ðFðkÞÞ
2
� ðGðkÞÞ

2
þ 1� ð20Þ

½1þ hHðkÞi �Gi�1 þ ½�2� hHðkÞi �Gi þ Giþ1 ¼ 2h2Fðkþ1Þ
i Gk

i ð21Þ

Finally, Eqs. (15) and (17) are discretized by central difference
approximations. The above algebraic system is solved by a general-
ized Gauss–Seidel method instead of a successive over relaxation
method. The convergence of the generalized Gauss–Seidel method
for the above diagonally dominant system is reached after 15 iter-
ations to achieve an accuracy of Oð10�6Þ. The FORTRAN 90 code
was compiled and run using the NIT Rourkela server composed
of Dual Intel Xeon (8 Gb RAM, 4 Gbps Lan card).
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