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a b s t r a c t

Bubble collapse and associated shock wave emission are characterized by the compressibility of both gas
and liquid. The bubble motion may, however, be in the low Mach number flow regime when the bubble is
near the maximum size at the early stage and at its full rebound. Although it is quite well known that a
compressible flow solver encounters difficulties in the low Mach number regime, the influence of the low
Mach number on the simulation of bubble collapse and rebound is not clear. In the present work, an axi-
symmetric compressible solver based on the acoustic Riemann solver is used to simulate the dynamics of
bubble motion. The artificial viscosity terms in the Riemann solver are rescaled for the low Mach regime
by following the concept of numerical sound speed, which was originally developed in the AUSM family
scheme. The numerical results are compared with the solutions of the Rayleigh model for bubble collapse
and the Keller–Miksis model for bubble collapse and rebound. It is found that the low Mach number scal-
ing improves the accuracy of the size of a collapsing bubble considerably.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Since the work of Lord Rayleigh who solved the problem of the
collapse of an empty cavity in infinite liquid [1], the problem of
bubble collapse and rebound has extensively been studied by
many researchers, because of its importance in industry, the ero-
sion damage on ship propellers for instance. An overview of the
theoretical works in this field is given in the review article by Ples-
set and Prosperetti [2]. If the surface tension, viscosity, compress-
ibility and thermal effect are neglected, the motion of the bubble
can be described with the Rayleigh equation [1]. The initial velocity
of the bubble boundary is zero and in the early stage, this velocity
is quite small, so the incompressible assumption is reasonable.
Nevertheless, the Rayleigh equation would predict that the velocity
of the bubble interface approaches infinity as the bubble radius
approaching zero, which indicates that the liquid compressibility
should not be neglected when the bubble radius gets very small
compared to the initial bubble size. Shock wave emission in the li-
quid during the bubble collapse has been observed by experiments
(e.g. [3]). For numerical investigation of the late stage of the bubble
collapse, the compressibility has to be taken into consideration.

Several compressible numerical investigations of bubble
collapse have been published in recent years. Müller et al. [4] com-
pared two compressible gas–liquid two-phase flow methods for
bubble dynamics simulation. One is the diffuse interface two-fluid
method [5] which solves the Riemann problem for each cell inter-
face to evolve density, momentum and energy in time and solves
the gas fraction equation to track the location of the interface.
The other is the level set combined with ghost fluid method [6].
The numerical results were compared with the Keller–Miksis mod-
el [7]. In their work, only the quasi-one-dimensional Euler equa-
tion was solved. The bubble collapses in both the free space and
near a rigid wall are simulated by Müller et al. [8]. Johnsen and Col-
onius [9] investigated shock-induced and Rayleigh collapse of a
bubble, using a fifth order accurate finite volume weighted essen-
tially non-oscillatory (WENO) scheme to solve the Euler equation
and the c-based model of Shyue’s [10] to track the bubble inter-
face. Lauer et al. [11] investigated symmetric and asymmetric cav-
itation bubble dynamics using the conservative interface method
of Hu et al. [12]. The mass transfer across the vapor–liquid inter-
face was also included.

All above-mentioned schemes are explicit. Nagrath et al. [13]
developed an implicit solver that combines the ghost fluid with
the level set approach to treat the air–water interface, and they
further studied the implosion and rebound of a small air bubble
in water and reported that the bubble may deviate from spherical
symmetry at the final stage of the bubble collapse. In order to
combat with the sever time step at the low Mach number regime
of bubble implosion, they employ the Rayleigh equation to
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provide the early solution until the gas Mach number reaches
approximately 0.3, which then serves as the initial condition for
the fully compressible solver.

In the low Mach number regime, a compressible solver encoun-
ters a few difficulties. The most critical problem is the lose of con-
vergence rate and accuracy. There are at least two successful
strategies to solve the problem. The preconditioning method
[14–16] introduces a preconditioner matrix and alters the charac-
teristics of the governing equations, so that all waves move at the
similar speeds. Another method is to directly rescale the numerical
viscosity that is built in the compressible flow solvers, so that the
discretized equation may converge to the incompressible limit at
the low Mach regime [17–21]. The concept of numerical speed of
sound employed in the AUSM family schemes [17,18] is one of
the successful methods in this category.

In the present work, the method of rescaling of numerical vis-
cosity is introduced in an implicit compressible solver for the sim-
ulation of the bubble dynamics. The flow field is assumed to be
axisymmetric. The Lagrange-remap method is used to solve the
axisymmetric Euler equation. In the Lagrange step, the volume of
fluid method, or more precisely the volume tracking method, is
used to sharply resolve the gas–liquid interface. The numerical
results are compared with the theoretical solutions and the
numerical results in the literature. It is found that low Mach
number scaling does improve the accuracy significantly in the
simulation of bubble collapse and rebound.

2. Numerical method

A two-step procedure is followed in our simulation. First is the
Lagrange step, in which the volume, momentum and energy of a
Lagrangian particle or a control volume moving at the speed of
flow velocity is updated. Then in the remap step, the conservative
quantities of the particle are remapped back to the initial fixed
Eulerian grid.

Consider the mass, momentum and energy conservation laws in
three dimensional Lagrangian coordinate system
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where VðtÞ is a time-dependent control volume enclosed by the
boundary SðtÞ;n is the outward unit vector normal to the boundary
of the control volume, U is the vector of conservative variables, and
F is the flux vector:
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where q is the density, p is the pressure, u is the velocity vector, I is
the unit tensor, E ¼ eþ u � u=2 is the specific total energy, and e is
the specific internal energy. For axially symmetric problems in
which U is independent from the angular coordinate h , and if the
motion in circumferential direction is neglected (the velocity at
the angular direction uh ¼ 0), Eq. (1) can be expressed only in axial
and radial (denoted by x and y hereafter) directions, with all phys-
ical quantities uniformly distributed in the circumferential
direction.

The mass and energy conservation equation can be expressed in
the 2D control volume in x–y plane:
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where L is the line along the boundary of the 2D cell ABCD as shown
in Fig. 1, N is the outward unit vector normal to the boundary of this
2D cell, m is the mass of the material in the axisymmetric domain
ABCD� A0B0C0D0.

The area weighted formulation [22] is used for the momentum
equation, which can ensure spherical symmetry for one dimen-
sional spherical flow:

m
�y
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þ
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L
pNdL ¼ 0; ð5Þ

where u ¼ ðu vÞT ;u;v is the velocity component in x; y direction
respectively;

�y ¼
R

A ydAR
A dA
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is the averaged pseudo radius; A denotes the 2D cell ABCD.
Although a rectangular cell is shown in Fig. 1, Eqs. (3)–(5) can be

applied to cells of any shape.
In order to close the system, the equation of state (EOS) for the

fluids is needed. In present simulation, ideal gas EOS is used for gas,
and Tait EOS is used for liquid:

p ¼ B0
q
qc

� �n

� 1
� �

þ A0; ð7Þ

where A0;B0;n, and qc are parameters corresponding to materials.
For water, the following values can be specified: A0 ¼ 0:1 Mpa,
B0 ¼ 331 Mpa, n ¼ 7:15, qc ¼ 103 kg=m3; these parameters are used
throughout present work.

To obtain the pressure and normal velocity at the interface of
the 2D control cell, the acoustic linearized Riemann solver [23] is
used:

p� ¼ qlalpr þ qrarpl þ qlalqrarðul
n � ur

nÞ
qlal þ qrar

; ð8Þ

u�n ¼
pl � pr þ qlalul

n þ qrarur
n

qlal þ qrar
; ð9Þ

where the superior ⁄ denotes the value at the face of the 2D control
cell; the superior l=r denotes the value at the left/right side of the
face; the subscript n denotes the velocity component at N direction,
N is the unit vector normal to the face, pointing from left to right; a
is the sound speed.

The concept of numerical speed of sound [17] is employed to
the acoustic linearized Riemann solver. A scaling function fa is used
to obtain the numerical sound speed ~a

~a ¼ faðMoÞa: ð10Þ

Fig. 1. Sketch of a control volume for axisymmetric problems, x; y are the axial and
radial coordinate directions respectively.
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