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a b s t r a c t

Among the various direct numerical simulation (DNS) methods dedicated to multiphase flow, the front-
tracking methods that use a Lagrangian mesh to describe explicitly the interfaces are generally consid-
ered as a very accurate and complex method. In this family of methods, while a fine Lagrangian mesh
is desirable for a better representation of the interfacial area, the surface forces and the bubble or droplet
volume, one cannot arbitrarily choose the Lagrangian mesh size. Indeed, the Lagrangian mesh displace-
ment algorithm is unstable if the number of Lagrangian degrees of freedom does not match the number of
involved Eulerian velocity points. As a consequence, in traditional front-tracking implementations, an
accurate description of the interfaces is expensive in terms of Eulerian mesh cells. We demonstrate that
a front-tracking interface smoothing (FTIS) method can reduce the constraints on the mesh sizes. It con-
sists in damping the highest spatial frequency components of the Lagrangian mesh to compensate for the
lack of Eulerian velocity points. The test case of fundamental proper frequency of a bubble proves the
validity of the FTIS method. An example of a 3D-bubble rising shows the interest and the potential appli-
cations of the FTIS method.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Two phase flows are very common flows in natural environ-
ment and industrial processes. The direct numerical simulation
(DNS) of interfaces is interesting to understand micro-level phe-
nomena (e.g. mass or heat transfers at the interfaces, such as in
[1]) that potentially drive macro-level phenomena (e.g. global effi-
ciency of a heat exchanger). One difficulty to simulate interfaces is
the discretization of surface tension. This force is proportional to
the mean curvature of the interface, which is a second order deriv-
ative of the surface geometry. Among the DNS methods, we can
distinguish the moving mesh methods, the front-tracking methods
and the fixed mesh methods. The moving mesh methods consist in
using a moving mesh where a surface tracks the shape of the inter-
faces. These methods are very efficient when bubbles are spherical
[2,3]. Among these methods, one finds the ALE methods (Arbitrary
Lagrangian Eulerian) [4]. The front-tracking methods use a fixed
mesh for the volume variables and a moving surface mesh to rep-
resent the position of the interfaces [5,6]. This paper is dedicated to
this kind of methods. The fixed mesh methods only use an Eulerian
mesh. The balance equations of fluids and interfaces are solved
with this fixed mesh. The interface capturing methods are the vol-
ume of fluid (VOF) methods [7,8] or the level-set methods [8]. The

VOF methods use a phase indicator equal to 1 in one phase and to 0
in the other one. The level-set methods use a function where the
interface position is implicitly defined by a level-set value of the
function (e.g. the signed distance at the interface).

In the front-tracking methods, the interface is represented by a
Lagrangian surface mesh. In some front-tracking implementations,
high order polynomial elements are used to represent the inter-
faces in order to obtain good approximations of the curvature
and of the interface position during the remeshing steps. See for
example [10–12] where cubic splines are used. These implementa-
tions provides a reasonable accuracy with a relatively low Lagrang-
ian markers density, but interpolation steps and exact volume
computation of the phase volume and surface energy are quite dif-
ficult to implement [13]. In this paper, we present an implementa-
tion of a front-tracking based method where simpler plane surface
elements are used to describe the interface. In this case, the exact
calculation of the volume fraction and of the interface surface is
much easier. These elements are then used to provide an exact dis-
crete mass balance of the phases (including phase change), and a
control of the discrete surface energy, which is strongly related
to spurious currents.

The drawback of these low order surface elements is the lack of
precision when only a few Lagrangian markers are used, which is
normally the case because of the earlier mentioned stability issues.
This paper describes a simple algorithm component to allow for
a higher marker density in the simulations: the front-tracking
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interface smoothing (FTIS). It is worth noting that although front-
tracking, VOF and level-set methods are originally DNS methods,
several recent works try to extend these methods to some kind
of Large Eddy Simulation (LES) for two-phase flows [14–19]. The
FTIS method is especially useful in that context.

In Section 2, we examine the interest of the FTIS. Then, we de-
scribe the algorithm and properties. Finally, Section 3 is dedicated
to the validation of the FTIS. Three test cases are realized. The first
one concerns the oscillations of a 2D elliptical bubble. The second
one verifies that the equilibrium of a gas bubble without any par-
asitic currents can be reached. The third one compares the terminal
velocity and the bubble shape obtained with the FTIS method and
an ALE reference simulation.

2. Front-tracking interface smoothing (FTIS)

2.1. Influence of the Lagrangian markers density on the stability and
the accuracy of the front-tracking method

Since only linear elements are used to describe the interface, the
computed volume and surface of any discretized interface geome-
try converges to the exact value with second order accuracy with
respect to the Lagrangian markers spacing. Because buoyancy
forces depend on the volume and viscous forces depend on the sur-
face, the density of Lagrangian markers directly affects the accu-
racy of the simulations.

For example, let us consider a unity radius circle discretized
with N Lagrangian markers. The area A and perimeter P of this dis-
cretized two dimensional bubble are:

A ¼ Nsin
p
N

� �
cos

p
N

� �
ð1aÞ

P ¼ 2Nsin
p
N

� �
ð1bÞ

The real area is p and the real perimeter is 2p. Let x be the ratio p
N.

The relative errors committed on the area EA and on the perimeter
EP are:

EAðxÞ ¼ 1� cosðxÞ sinðxÞ
x

ð2aÞ

EPðxÞ ¼ 1� sinðxÞ
x

ð2bÞ

Fig. 1 represents the discretization errors as a function of the
number of Lagrangian markers in the 2D case. The error on the
bubble volume is higher than the error on the surface. In order to
obtain a volume error below 5%, we must have x < 0:28, which
means that the distance between markers must be three times
smaller than the local radius of curvature.

Furthermore, too few Lagrangian markers lead to an artificial
asymmetry of the interface (see Fig. 2). The interfacial forces
and the velocity field around the bubble are then asymmetric.
The bubble trajectory could be directly affected by this numerical
error [20].

Using a finer Lagrangian mesh is the simplest way to increase
the accuracy of the method. Unfortunately, the traditional velocity
interpolation used to update the Lagrangian mesh position is
unstable if the Lagrangian mesh is too fine, as it will be shown in
the next section.

2.2. Numerical instabilities related to the Lagrangian mesh refinement

In traditional implementations of the front-tracking method,
the Lagrangian mesh position is updated by moving the mesh
nodes with an interpolation of the Eulerian velocity field. One con-
straint for the numerical scheme to be stable, is that the interface
shape can evolve towards an equilibrium position with a minimum
of the surface energy (which, in the front-tracking method, is a
Lagrangian mesh with the minimum surface, for a given phase vol-
ume). If the interface shape is not at mechanical equilibrium, the
surface tension source term tends to accelerate the fluid in such
a way that the surface energy will decrease (Fig. 3).

If the Lagrangian mesh node number exceeds the number of
Eulerian velocity degrees of freedom involved in the displacement
of these nodes, there exists a subspace of the set of all possible
velocity fields of the Lagrangian mesh that cannot be generated
by any interpolated Eulerian velocity field. This subset corresponds
to high frequency oscillations of the surface mesh that produce no
change of the discrete phase indicator function on the Eulerian
mesh (Fig. 3). During the computation, these high spatial frequency
oscillations will develop on the interfaces and no discrete Eulerian
velocity field will be able to control them.

To sum up, the coupling between the Eulerian and the Lagrang-
ian mesh quantities is effective only for spatial scales larger than
the size of Eulerian cells. If a finer Lagrangian mesh is used, the
physical damping of the high spatial frequencies on the Lagrangian
mesh must be modelled by additional equations in the Lagrangian
mesh transport equation.

2.3. The FTIS algorithm

The purpose of FTIS is to provide an appropriate damping of
high frequency perturbations of the Lagrangian mesh not handled
by the coupling with the Eulerian velocity field (see Fig. 4).

The main requirement for the damping model is that it provides
the correct physical behavior at scales larger than the Eulerian

π/N

Er
ro

r

Error

committed on the area

committed on the perimeter

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fig. 1. Error coming from the discretization of the perimeter and impacting the
value of the area of a circular interface in function of the number of Lagrangian
markers N.
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Fig. 2. Example of dissymmetry due to the discretization.
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