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a b s t r a c t

The space–time Galerkin/least-squares finite element method with discontinuity capturing (ST-GLSDC),
developed by Hughes and collaborators [Shakib et al. A new finite element formulation for computational
fluid dynamics: X. The compressible Euler and Navier–Stokes equations. Comput Methods Appl Mech Eng
1991;89:141–219], allows to study both compressible and incompressible single-fluid one-component
flows. It is effective in the stabilization of the numerical solution without introducing excessive overdif-
fusion. In this work the development by Hauke and Hughes [A comparative study of different sets of
variables for solving compressible and incompressible flows. Comput Methods Appl Mech Eng
1998;153:1–44] to pressure primitive variables is extended to single-fluid multicomponent compressible
and incompressible flows of gas–liquid mixtures at local mechanical and chemical equilibrium. The sta-
bilized algorithm is implemented in a parallel C++ library, which is tested on several benchmarks. The
solution of the system of equations for the conservation of mass of each component, and of momentum
and energy of the global mixture, requires the introduction of mass fractions as primitive variables to
describe mixture composition. The weak formulation, the stabilization parameters, and the time-
marching algorithm are rewritten in terms of the expanded set of variables, keeping similarity with
the formulation in pressure variables.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Flows of compressible–incompressible, multicomponent multi-
phase fluid mixtures are of common interest in theoretical, geo-
physical, and industrial CFD [1,2].

The computation of incompressible and compressible fluid
dynamics generally requires completely different numerical
approaches; only a few stabilized finite element formulations for
compressible–incompressible flows have been developed. The com-
pressible formulation in augmented conservation variables [3],
derived from the streamline-upwind/Petrov–Galerkin techniques
[4–6], properly computes the incompressible limit. The characteris-
tic-based split procedure with Taylor-Galerkin/pressure-correction
scheme, suitable for both compressible and incompressible regime
[7,8], combines the methods [9–11] for compressible flows.

The Galerkin/least-squares formulation adds the least-squares
term as a weighted residual. It was first introduced for compress-
ible single-fluid flows [12], subsequently recast in entropy vari-

ables, supplemented with a shock-capturing operator and with a
full space–time discretization to obtain the space–time Galerkin/
least-squares formulation with discontinuity-capturing operator
(ST-GLSDC) [13]. A compressible entropy formulation for multi-
component mixtures of ideal and perfect gases was also developed
[14,15].

The single-fluid ST-GLSDC method and other slight variants
were successfully applied to incompressible flows [16,17] and are
well behaved in the incompressible limit in the context of primi-
tive or entropy variables [18,19]. The unified approach by [18,19]
is the development of ST-GLSDC to handle the whole spectrum of
compressible–incompressible regimes, employing the same set of
variables.

The stability, accuracy, and convergence of ST-GLSDC are well
established, so that this method is a reliable basis for the present
formulation. The ST-GLSDC also allows accessory techniques such
as domain decomposition, local time-stepping and linear solution
algorithms, and can be efficiently solved with a GMRES developed
for the non-symmetric linear systems arising from the discretiza-
tion [20]. The feasibility of computational improvements in accu-
racy and speed is a practical requirement for the simulation of
multicomponent flows where the number of unknowns increases
drastically as components are added.
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The formulation presented in this paper extends from single-
fluid flows to multiphase multicomponent homogeneous gas–
liquid mixture flows at mechanical and chemical local equilibrium
the ST-GLSDC method [19] employing primitive variables, and gen-
eralizes to primitive variables and fluids with general equations of
state the multicomponent entropy method [14]. The weak formu-
lation, the stabilization parameters, and the algorithmic imple-
mentation at elemental level are written in order to solve the
conservation equations for the mass of each component rather
than for the fluid mass, along with the conservation equations
for momentum and energy of the mixture as a whole. The addi-
tional terms due to increased degrees of freedom in the formula-
tion are derived within the weak formulation. The expressions
for the stabilization parameters of the original ST-GLSDC, namely
the s parameter and the discontinuity capturing operator, are re-
placed with analogous ones accounting for the mixture compo-
nents, keeping dimensional consistency and simplicity. The
criterion followed in this extension is to keep the robustness of
the original method maintaining a reasonable computing effort.

Several finite element methods have been developed for multi-
component and/or multiphase flows. Some of them deal with par-
ticular subjects such as diffusion or sintering of phases, others are
restricted to incompressible flows with the SUPG formulation
[21–25]. The method proposed in this work allows the solution
of both compressible and incompressible large number of prob-
lems such as shock wave interaction with contact discontinuities,

evolution of internal interfaces, bubbly flows with evaporation or
gas dissolution.

2. Physical model

The model considers a compressible–incompressible multicom-
ponent multiphase mixture at mechanical, thermal and chemical
local equilibrium. Components can be in gaseous or liquid state,
and undergo instantaneous phase change. Chemical reactions
resulting in component production or consumption are not al-
lowed to occur. Gas–liquid mixtures may contain a continuous
and a dispersed phase, or phases separated by internal interfaces.

The governing equations are mass conservation of each compo-
nent, and momentum and energy conservation of the mixture as a
whole:

ðqykÞ;t þ ðquiykÞ;i ¼ �Jk
i;i for k ¼ 1; . . . ;n ð1Þ

ðqujÞ;t þ ðquiuj þ pdijÞ;i ¼ ðsjiÞ;i þ qbj for j ¼ 1; . . . ; d ð2Þ

ðqetÞ;t þ ðquiet þ puiÞ;i ¼ sijuj � qi �
Xn

k¼1

Jk
i hk

 !
;i

þ qðbiui þ rÞ ð3Þ

where all symbols are defined in the Nomenclature or the Appen-
dixes. Indexes after an inferior comma represent variables with re-
spect to which partial differentiation is computed; the summation
convention on repeated indexes is applied throughout. The mixture

Nomenclature

b body force vector per unit mass
c mixture sound velocity
d = 1, 2 or 3 number of spatial dimensions
e specific internal energy of mixture
et specific total energy of mixture
F source vector
Fadv advective flux vector
Fdiff diffusive flux vector
g partial specific Gibbs free energy of mixture
gk partial specific Gibbs free energy of component k
gp

k partial specific Gibbs free energy of component k in
phase p

h specific enthalpy of mixture
Jk
i mass diffusion flux of component k in ith direction

k specific kinetic energy of mixture
Kij diffusivity matrices
M Mach number
M molar mass of mixture
Mk molar mass of component k
n number of components
p pressure
Pr ¼ l

qj Prandtl number
qi diffusive heat flux in ith direction
r heat source per unit mass
Rk specific gas constant of component k
Re ¼ quL

l Reynolds number
S source matrix
Sc ¼ l

qD Schmidt number
t time
T temperature
u velocity vector
U conservative variables vector
V entropy variables vector
xk mixture molar fraction of component k
xp

k mixture molar fraction of component k in phase p
yk mixture mass fraction of component k

yp
k mixture mass fraction of component k in phase p

y = (y1, . . . ,yn) vector of mass fraction of components
Y primitive variables vector
dij kronecker delta
gp

k mass fraction of component k in phase p with respect to
component k

j thermal conductivity
l first viscosity coefficient of mixture
mh discontinuity capturing operator
np

k molar fraction of component k in phase p with respect
to phase p

q mixture density
s viscous stress tensor
sU intrinsic time-scale matrix for conservation formulation
sV intrinsic time-scale matrix for entropy formulation
sY intrinsic time-scale matrix for primitive formulation
()k kth component
()i ith spatial direction
()p phase p
ðÞqyk

index for the qyk conservative variable entry
()qy indexes for the qy1, . . ., qyn conservative variable entries
ðÞqui

index for the qui conservative variable entry
()qu indexes for the qu conservative variable entries
ðÞqet

index for the qet conservative variable entry
ðÞg�k

T
indexes for the g1�k

T ; . . . ; gn�k
T entropy variable entries

ðÞu
T

indexes for the u
T entropy variable entries

ðÞ�1
T

index for the 1
T entropy variable entry

(),y partial derivatives with respect to y1, . . ., yn�1 primitive
variables

(),p partial derivative with respect to p primitive variable
(),u partial derivatives with respect to u1, u2, u3 primitive

variables
(),T partial derivative with respect to T primitive variable
(),i partial derivative with respect to the ith spatial direc-

tion
(),t partial derivative with respect to time
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