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a b s t r a c t

This paper presents a gas-kinetic scheme to solve the multiple temperature kinetic model (MTKM), which
was proposed in J. Comput. Math. 29(6) (2011) 639–660, for the study of non-equilibrium flows. The
MTKM is a two-stage particle collision model possessing an intermediate quasi-equilibrium state with
a symmetric second-order temperature tensor. A gas-kinetic finite volume scheme is developed for the
numerical solution of the MTKM in the continuum and transition flow regimes. The gas-kinetic scheme
is designed for the updating of macroscopic variables, which include the conservative flow variables and
the multiple temperature field. In order to validate the kinetic model, the gas-kinetic scheme is used in
the study of lid-driven cavity flows in both continuum and transition flow regimes. The numerical results
predicted by the MTKM are compared with those from the direct simulation Monte Carlo (DSMC)
method, the Navier–Stokes equations (NSE), and the early three-temperature kinetic model (TTKM) pro-
posed in Phys. Fluids 19, 016101(2007). It is demonstrated that the MTKM has obvious advantages in
comparison with the NSE and the TTKM in capturing the non-equilibrium flow behavior in the transition
flow regime. One distinguishable phenomenon captured by the MTKM is that in the transition flow
regime the heat flux direction can be from a low temperature to a high temperature region, which vio-
lates the Fourier’s law of continuum flows. The MTKM provides a more accurate physical model than
the NSE for the non-equilibrium flows.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Gas flows can be categorized into different flow regimes based on
the Knudsen number Kn. In the continuum regime (Kn < 0:001), the
Navier–Stokes equations (NSE) are adequate to model the fluid
behavior. In the near continuum regime (0:001 < Kn < 1), the
NSE are known to lose accuracy or be inadequate. In fact this re-
gime is encountered in many practical engineering problems, for
example those in aerospace engineering and Micro-Electro-
Mechanical Systems (MEMS). Therefore, how to realize reliable
numerical simulations of gas flows in this regime at low computa-
tional costs are of great interest from both scientific and practical
views.

Currently the direct simulation Monte Carlo (DSMC) method is
one of the most successful techniques for the non-equilibrium gas
flows. However, the DSMC becomes very inefficient for near con-
tinuum and low speed flows because of the cell size restriction
and the statistical noise. Various modifications have been proposed
in order to improve the efficiency of the standard DSMC, for exam-
ple the information preservation (IP) method [3–6], the variance

reduction approach [7], the low Mach number DSMC algorithm
[8] and the hybrid methods [9,10], just to name a few. Alternative
methods, which directly solve the Boltzmann or model equations
[11–15], have also attracted increasing attentions recently.

One of the continuum-based approaches in modeling the
non-equilibrium flows is to use the high order governing equations
derived from the Bhatnagar–Gross–Krook (BGK) model by the
Chapman-Enskog expansion, for instance the Burnett and super-
Burnett equations. However, it has been well recognized that these
equations have the stability problems and cannot be directly used
in numerical simulations [16]. In recent years, some improvements
have been proposed in order to cure these problems [17–19]. An-
other strategy for non-equilibrium flow simulations is deriving var-
ious governing equations by the moment closure technique, such as
Grad’s 13 moment equations [20], the regularized 13 (R13) and 26
(R26) moment equations [21,22], Levermore’s 10 moment system
[23], and many others.

Recently, a multiple temperature kinetic model (MTKM) was
proposed [1] for continuum and near continuum flow simulations,
which is a nature extension of an early kinetic model [2,24]. The
main difference between the two kinetic models is that the former
defines the translational temperature as a second-order symmetric
tensor while the latter only uses three translational temperatures
in the x-, y- and z-directions. This is the reason that the latter is
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renamed the three-temperature kinetic model (TTKM) here. In fact,
prior to these two models, the gas-kinetic schemes describing the
non-equilibrium flows related to the molecular rotational and
vibrational degrees of freedom have been introduced for the shock
structure calculations [25,26], where three different temperatures,
i.e. the translational, rotational and vibrational temperatures, are
used for modeling the non-equilibrium effects.

In [1], the generalized macroscopic gas dynamic equations
based on the MTKM have been derived and analyzed, some qua-
si-one-dimensional numerical tests have been shown to demon-
strate the performance of the MTKM in the micro-scale flow
simulations. In the present work, instead of solving the corre-
sponding macroscopic equations, a gas-kinetic scheme will be
developed for the MTKM directly, and some truly two-dimensional
(2D) test cases for the micro-scale gas flows will be presented in
order to evaluate the capability of the MTKM in modeling the
non-equilibrium flows.

2. Multiple temperature kinetic model and the gas-kinetic
scheme

In this section, we briefly review the essentials of the MTKM
and propose a finite volume gas-kinetic scheme as well as the wall
boundary condition to get the numerical solutions of the MTKM.

2.1. A brief review of the MTKM

The three-temperature kinetic model for continuum and near
continuum flows was proposed in [2], where only three transla-
tional temperatures for monotonic gases are used in the construc-
tion of the model. Numerical tests [2,24] have demonstrated some
success of the TTKM in describing the non-equilibrium gas flows.
However, the defects of the early model are also obvious: the appli-
cations of the model in numerical simulations will depend on the
choice of the coordinate system, since only three translational tem-
peratures in the x-, y- and z-directions are considered. Theoreti-
cally from the extended definition of temperature it should be a
second-order symmetric tensor, in that case the model’s utility will
be independent of the coordinate system used.

These problems were cured in [1], where the temperature is de-
fined as a second-order symmetric tensor and used to construct an
improved gas-kinetic model, i.e. MTKM, for non-equilibrium flow
simulations. The two-stage MTKM can be written as [1]

@f
@t
þ u � rf ¼ g � f

s
þ Q ; ð1Þ

where t is the time, u ¼ ðu; v;wÞ is the velocity of the gas particle, s
is the collision time representing the relaxation rate of the distribu-
tion function f due to the collisions, Q ¼ ðf eq � gÞ=s, which is treated
as a special source term different from the term ðg � f Þ=s in the
model [1], therefore, although this model is identical to the BGK
model mathematically, the physical significance of two models is
different. In the MTKM, the whole relaxation process of the non-
equilibrium distribution function f to the Maxwellian equilibrium
state f eq is separated into two sub-processes: (i) f relaxes to an
intermediate state g between f and f eq; (ii) the intermediate distri-
bution g relaxes to the Maxwellian equilibrium state f eq. Although
other choices may be possible, in our study the intermediate state
g is assumed to be a Gaussian distribution

g ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where q is the density, R is the gas constant, U ¼ ðU;V ;WÞ is the
macroscopic velocity of the gas, T is the symmetric second-order
temperature tensor, and for monatomic gas it reads

T ¼
Txx Txy Txz

Txy Tyy Tyz

Txz Tyz Tzz

0
B@

1
CA:

By taking moments W ¼ ð1;ui; uiuj=2ÞT of Eq. (1) and using the
Chapman-Enskog or iterative expansion, the following generalized
gas dynamic (GGD) equations based on the MTKM can be derived
[1],

@tqþ @kðqUkÞ ¼ 0; ð3Þ

@tðqUiÞ þ @k½qðUiUk þ RTikÞ� ¼ @k½qRðTdki � TkiÞ�; ð4Þ
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¼ 2
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where dij is the Kronecker delta function, the averaged temperature
T is obtained by

T ¼ 1
3

X3

l¼1

Tll; ð6Þ

and Q is the generalized heat flux given by

Qijk ¼ �
sqR2

Pr
ðTkl@lTij þ Til@lTjk þ Tjl@ lTkiÞ; ð7Þ

where Pr is the Prandtl number.
Moreover, it has been shown by theoretical analysis in [1] that

the standard NSE can be recovered from the first-order GGD equa-
tions in the continuum limit (Kn! 0), which will also be clearly
demonstrated by our numerical examples in this paper. Interested
readers may refer to [1] for the construction of the MTKM, the de-
tailed derivation and analysis of the GGD equations based on the
MTKM for non-equilibrium gas flow simulations. One point that
needs to be emphasized is that the numerical method presented
in the next subsection is for the MTKM directly and the GGD equa-
tions are not explicitly used in the construction of the gas-kinetic
scheme.

2.2. A numerical approach to solve the MTKM

Now we present the numerical approach to solve the MTKM. The
numerical method for the MTKM is a finite volume scheme, which
is similar to the numerical algorithm employed in [2] for the early
TTKM. Both of the two methods are extensions from the gas-kinetic
BGK solver for the NSE [31]. For simplicity, the 2D cases will be con-
sidered hereafter in this paper, but the scheme presented here can
be also extended to three-dimensional problems.

For 2D gas flows, we have Txz; Tyz ¼ 0 for the temperature tensor
T. By taking moments, the macroscopic variables are defined as

W ¼
Z

gW2Ddudvdw ¼ ðq;qU;qV ; Exx; Eyy; Ezz; ExyÞT; ð8Þ

where

W2D ¼ ð1;u;v ;u2=2; v2=2;w2=2;uv=2ÞT; ð9Þ

and

Eij ¼ qðUiUj þ RTijÞ=2; ð10Þ

with i; j ¼ 1;2;3 representing x; y; z, respectively. Under the finite vol-
ume framework, for a uniform grid the updating of the cell-averaged va-
lue Wp;q over the cell (p; q) from the time tn to tnþ1 can be obtained by
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