
Implicit gas-kinetic BGK scheme with multigrid for 3D stationary transonic
high-Reynolds number flows

Jin Jiang, Yuehong Qian ⇑
Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, PR China

a r t i c l e i n f o

Article history:
Received 1 August 2011
Received in revised form 4 March 2012
Accepted 29 April 2012
Available online 16 May 2012

Keywords:
Gas-kinetic BGK scheme
Computational efficiency
Acceleration techniques
3D steady transonic viscous flows

a b s t r a c t

Instead of solving the Euler and Navier–Stokes equations directly, the gas-kinetic BGK scheme based on
the Boltzmann equation has been developed and attracted more and more attentions since the early
1990s. It shows high accuracy and robustness for a wide range of flow regimes. But an obvious disadvan-
tage of the BGK scheme is the low computational efficiency, in particular for multidimensional problems.
Till now it has not been widely used as a practical tool for science and engineering applications. To over-
come this drawback, in this paper some acceleration techniques, including local time stepping, implicit
LU-SGS method, and multigrid strategy, are implemented into the original BGK approach and the new
scheme is applied to study 3D steady transonic viscous flows. Numerical results show the significant
speed up of the scheme to capture the steady state solution.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Transonic aerodynamics plays an important role in the opera-
tion of long range aircrafts [1]. The cruise speed of most civil air-
planes is in the transonic regime. The physical natures associated
with transonic flow, including shock wave, discontinuity, transi-
tion from laminar to turbulent flow, etc., are still not fully under-
stood. Mathematically, the governing equations are nonlinear
and hybrid, which show elliptic feature in the subsonic region
and hyperbolic property in the supersonic parts. Thus it is hard
to find analytical solutions to predict the flow patterns and then
to guide the airplane designing. Following the pioneering work of
Murman and Cole [2] in the early 1970s, many numerical methods
for transonic aerodynamics have been developed, from the small
disturbance equation to the full potential equation, the Euler equa-
tions, and the Navier–Stokes equations. Some brief reviews can be
found in [3,4]. With the ever-increasing high performance of
super-computer and sophisticated software, Computational Fluid
Dynamics (CFD) has been considered as a convenient and useful
tool for aerodynamic analysis and designing. However, to simulate
high-Reynolds number flows or around complex configurations
flows is still a challenge [5]. The main difficulty is not the vast need
of computing resources, but the physical modeling and numerical
approaches.

Gas-kinetic BGK scheme (GKS) [6,7] has been developed for
compressible flows since the early 1990s. Since then, many

progress has been obtained on the validation, analysis and
improvement of the GKS during the last two decades. There are
numerous literatures on this topic. Xu [8] compared the gas-kinetic
scheme with the Godunov method on the accuracy, efficiency,
robustness, and claimed that the BGK method is more physical
than the latter. Ohwada [9] explained how to construct the kinetic
scheme for evolutionary equations and investigated the theoretical
background and numerical errors of the scheme. Xu et al. [10] sim-
ulated hypersonic viscous flows by a multidimensional BGK flow
solver with implicit LU-SGS method. Su et al. [11] and Xu et al.
[12] extended the GKS to low Mach number flows. May et al.
[13] improved the efficiency and convergence of the BGK scheme
and presented a simplified scheme to reduce the CPU time. Issues
with respect to the construction of high-order scheme [14], the
extension to rarefied flows [15] and MHD [16] have also been pub-
lished. Based on its constructive modeling, the GKS has a sound
physical basis and can be employed as a robust and reliable flow
solver to simulate problems from low Mach number flows to
hypersonic flows.

Nevertheless the GKS has an obvious drawback in terms of its
weak computational efficiency and expensive computational cost,
which limits its practical applications. Kim et al. [17] stated that
in comparison with the Riemann solver, the ratio of CPU time be-
tween convective upwind and split pressure (CUSP) scheme and
standard BGK scheme per grid point per step is CUSP:BGK =
1:1.908. To overcome this disadvantage, in this paper we will pres-
ent an implicit multigrid BGK scheme and extend it to solve 3D
high-Reynolds number flow problems.
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2. Numerical method

2.1. Gas-kinetic BGK solver

After introducing BGK [18] model into 3D Boltzmann equation,
in the absence of external force term, we get:
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where f is the gas distribution function and g is the equilibrium
state. s is the relaxation time. Both f and g are functions of time t,
particle velocities ub = (u, v, w) (b = 1, 2, 3), space xb = (x, y, z) and
internal variable n. The equilibrium state g is Maxwellian

g ¼ q
k
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where q is the density, k = 1/2RT with the gas constant R and the
temperature T. K denotes the number of internal freedom of n and
equals to (5 � 3c)/(c � 1), here c is the ratio of specific heats. (U,
V, W) are the macroscopic velocities along x-, y- and z-directions.
And n2 = n1n1 + n2n2 + � � � + nKnK.

Details on derivation from Eq. (1) to the Euler and Navier–
Stokes equations can be found in [8].

Once the gas distribution is known, the macroscopic flow vari-
ables and their fluxes (including convection term and viscous
term) can be obtained by the following integrals:
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where dN = dudvdwdn with dn = dn1dn2 � � � dnK, wa are the collision
invariants wa ¼ 1;u;v ;w; 1

2 ðu2 þ v2 þw2 þ n2Þ
� �T

, and E is the total
energy per unit mass. According to the conservation laws, the right
hand side of Eq. (1) at any point in space and time should satisfy the
compatibility conditions:Z
ðg � f ÞwadN ¼ 0: ð4Þ

To simulate multidimensional problems, the directional-
splitting method has been adopted. Here, the x-directional equa-
tion, for example, is taken:
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Following Xu’s [7] suggestion, the initial gas distribution f0 at
control volume (CV) interface xi+1/2 can be expressed as

f0 ¼
gl½1þ alðx� xiþ1=2Þ � sðaluþ AlÞ�; x < xiþ1=2;

gr½1þ arðx� xiþ1=2Þ � sðaruþ ArÞ�; x > xiþ1=2;

(
ð6Þ

here the indexes for the other two directions (j, k) are omitted. The
superscripts 0l0 and 0r0 denote the left- and right-side of the interface
xi+1/2. a is the spatial slope of f, which has the form as:

a ¼ a1 þ a2uþ a3v þ a4wþ a5
u2 þ v2 þw2 þ n2

2
¼ aawa; ð7Þ

and can be determined through the relationships
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where Dx is the distance from the CV center to the interface.
To avoid the numerical oscillation close to the interface, the

conservation flow variables Q l
iþ1=2 and Q r

iþ1=2 are reconstructed
by MUSCL interpolation [19]:
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where u is a limiter function uðy1; y2Þ ¼
y1 y2

2þ�ð Þþy2 y2
1þ�ð Þ

y2
1þy2

2þ2� . The param-

eter � is a small constant with the order being proportional to the
local grid scale.

On the fact that the non-equilibrium terms of Eq. (6) have no
contributions to the conservative variables, we know:R

glðaluþ AlÞwadN ¼ 0;R
grðaruþ ArÞwadN ¼ 0:

(
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By solving Eq. (11) the temporal slope A will be obtained.
The equilibrium state g is assumed to have two slopes too [7]

g ¼ g0½1þ ð1� H½x� xiþ1=2�Þ�alðx� xiþ1=2Þ
þ H½x� xiþ1=2��arðx� xiþ1=2Þ þ At�; ð12Þ

where H[x] is the Heaviside function

H½x� ¼
1; x P 0;
0; x < 0:

�
ð13Þ

�a has the similar form of a: �a ¼ �aawa and can be determined by the
relation of
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where Q 0
iþ1=2 is the vector of the initial conservative values at CV

interface xi+1/2, which can be calculated by
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So far, the only unknown coefficient is A.
The general solution f of BGK Eq. (1) can be expressed as:
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Substituting Eqs. (6) and (12) into the above formula, after integrat-
ing, we get the gas distribution function f:
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Then substituting Eqs. (12) and (17) into the compatibility condi-
tions (4), a simplified algorithm for A is given as below [20,21]
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