Computers & Fluids 76 (2013) 73-85

Contents lists available at SciVerse ScienceDirect

Computers & Fluids

journal homepage: www.elsevier.com/locate/compfluid

Computation of Hopf bifurcations coupling reduced order models and
the asymptotic numerical method

@ CrossMark

J. Heyman®!, G. Girault*®, Y. Guevel?, C. Allery ¢, A. Hamdouni ¢, ].M. Cadou ®*

2 Laboratoire d’Ingénierie des Matériaux de Bretagne, Université Européenne de Bretagne, Université de Bretagne Sud, Rue de Saint Maudé, B.P. 92116, 56321 Lorient Cedex, France
b Centre de recherche des Ecoles de Saint-Cyr Coétquidan, Ecoles de Coétquidan, 56381 Guer Cedex, France
€ LASIE, Université de la Rochelle, Pdle Science et Technologie, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1, France

ARTICLE INFO ABSTRACT

Article history:

Received 30 August 2012

Received in revised form 7 January 2013
Accepted 4 February 2013

Available online 16 February 2013

This work deals with the computation of Hopf bifurcation points in the framework of two-dimensional
fluid flows. These bifurcation points are determined by using a Hybrid method [1] which associates an
indicator curve and a Newton method. The indicator provides initial values for the Newton method. As
the calculus of this indicator is time consuming, we suggest using an algorithm to save computational
time. This algorithm alternates reduced order and full size step resolution which are all carried out by
using a pertubation method. Hence, the computed vectors on the full size problem are used to define
the reduced order model. As the low-dimensional model has a finite validity range, we propose a simple
criterion which makes it possible to know when the basis has to be updated. The latter phase is carried
out by going through a new full step which permits to build a new basis and, thus, compute a supplemen-
tary part of the indicator curve. Some numerical tests, such as the classical lid-driven cavity or the flow in
a channel, permit to fix the optimum values of the parameters for the proposed method. The objective of
this study is to save computational time without modifying the performance of the Hybrid method ini-
tially introduced in Ref. [1]. These numerical methods are applied to 2D fluid flows (flow in a channel and
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the 2D lid-driven cavity). Our conclusions, therefore, hold only for these kinds of problem.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A Hopf’s bifurcation is an instability of the fluid flow which is
characterized by the transition from a stationary state towards
an instationary one. From a mathematical point of view, a Hopf’s
bifurcation appears when a complex conjugate pair of eigenvalues
of the linearized Jacobian matrix crosses the imaginary axis of the
complex plane.

Usually, such instabilities are numerically computed by means
of the so-called direct methods and the indirect ones with the
monitoring of an indicator.

The principle of the direct method consists in iteratively com-
puting the solution of a nonlinear algebraic system which corre-
sponds to a Hopf bifurcation point [4-6]. Unfortunately, the
convergence of the algorithm depends on the choice of the initial
value.

The indirect method is based on the track of an indicator which
has the property of being null at a bifurcation point. The latter con-
sists, for example, in computing the eigenvalues of the Jacobian
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matrix, and in determining when a pair of complex conjugated val-
ues crosses the imaginary axis, see Refs. [2,3]. In [7], Cadou et al.
use an indirect method to determine the Hopf bifurcation for the
2D academic problems of the flow around a cylinder and the flow
in a lid-driven cavity. In fact, they introduce a bifurcation indicator
which has the property of being null at the singular points. To
avoid large computing times, the computation of this bifurcation
indicator is done with a perturbation method. Whereas it gives
accurate values of bifurcation points, this method requires a lot
of calculi, and is not automatic.

To circumvent this drawback, Brezillon et al. [1] propose to cou-
ple two methods (direct and indirect ones) resulting in a hybrid
algorithm. The idea of this hybrid method is that the initial guesses
of the Newton algorithm are determined by an indicator calcula-
tion. The numerical results show that the indicator calculation pro-
vides several initial values but some candidates do not lead to the
convergence of the Newton’s algorithm, resulting in a large
amount of CPU time without ensuring the convergence of the hy-
brid method.

Recently, Girault et al. [8] propose to improve the robustness of
the hybrid method by automatically determining the minima of
the indicator curve, and using them as initial values for the Newton
algorithm. In the case of the 2D lid driven cavity, the results show
that the method is efficient. Nevertheless, this algorithm still
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requires long CPU times mainly dedicated to the calculation of the
indicator because of the size of the manipulated Jacobian matrix.
Previous studies, [1,8], have shown that the calculation of the indi-
cator is the step that consumes the most CPU time in the hybrid
method. The idea of the present study is to propose an efficient
numerical method allowing for a faster calculation of the indicator.

A means of decreasing these CPU times is either the use of a
specific linear solver [9,10] or that of reduced order models. The
main objective of such methods is to replace a large fully dicretized
model with a reduced model describing correctly the dynamic
behavior and preserving fundamental properties of the full model.
Hence, the choice of the reduction technique is important. Today,
the POD is one of the most widely used techniques of model order
reduction. Introduced for the first time by Lumley [11] for the
study of turbulent flows, the POD consists in a linear decomposi-
tion yielding a physical and orthogonal spatial basis in which
dimensions are lower than the initial model. The reduced order
models are then obtained by projecting the full model onto this
POD basis. The main drawback of the POD is that it requires com-
putations of the unkown fields, in the full size problem, to build the
snapshots needed for determination of the reduced basis. This ap-
proach was used by Cazemier et al. [12] to compute Hopf bifurca-
tions in 2D lid-driven cavities. They carry out a first time-
dependent simulation of the Navier-Stokes equations for a large
Reynolds number. Next, they use these results to build, with the
POD, a reduced eigenvalues problem in order to determine precise
Hopf bifurcation points. In the case of the hybrid method, this
reduction technique is not the best way to proceed. Indeed, as
shown in Ref. [8], a single computation of the indicator can provide
the Newton method with a lot of initial guesses, which can lead
sometimes to 4 or 5 Hopf bifurcation points. A POD analysis can
then be performed using this first computation although results
will probably be the same as the ones obtained with the initial cal-
culi. So, the benefit of using a reduced model is nullified by the fact
that it requires a first computation which can be time consuming
and not useful for the determination of bifurcation points.

A reduced technique has been recently proposed in [13] and ap-
plied to define a linear solver [10] or to study nonlinear vibrations
of plates [14]. In this technique, the vectors computed in the first
steps of the perturbation method are used to build a basis which
permits to determine the other part of the nonlinear solution. In
the case of the linear solver, a preconditioning technique is added
to the reduction method with a view to avoiding a lot of basis mod-
ifications. It means that the basis is the same for almost all the
computations. In the framework of nonlinear vibrations of plates
[14], as the nonlinear curves do not evolve a lot all through the
computations, a single basis computation is necessary to compute
almost all the nonlinear solution curves. For the hybrid method, as
shown in references [1,8], the indicator curves which depend on
the angular frequency are very nonlinear. A single basis evaluation
is therefore not sufficient to determine the entire response indica-
tor curve. So the basis has to be upgraded all along the indicator
computation. We propose to alternate between full size problem
resolution and reduced order models steps. A full size computation
is performed when the reduced order solutions do not verify a sim-
ple residual criterion. With this full size computation, a new basis
is defined and permits then to carry out additional calculi of the
indicator on the reduced order problem. As the computation on
the full size model is very time consuming, mainly due to the fine
spatial discretization, the point is to limit these full size computa-
tional steps.

The paper is organized as follows. Section 2 is devoted to
theoretical aspects recalling the governing equations for an incom-
pressible viscous flow, and the stability analysis. Section 3 presents
the model reduction technique. Some numerical results related to
the academic problems of the lid-driven cavity and the flow in a

channel are given in Section 4, and show the relevancy of the pro-
posed method.

2. Elements of theory
2.1. Governing equations

In this study, we consider the movement of a viscous incom-
pressible flow described by the following Navier Stokes equations:

Ju 2 Vp .

E—vVu+u~Vu+770 in () (1)
V-u=0 in (Q) (2)
u=7uy; on (9,9Q) (3)

In these equations, Q and 9, are the fluid domain and the bound-
ary surface where velocity is imposed. The symbols u, p, p, v stand,
respectively, for the velocity field, the pressure, the density and the
kinematic viscosity of the fluid. The boundary condition imposes a
velocity field of intensity A which is linked to the Reynolds Number
defined by Re = Z|ug|L/v with L being a geometrical reference length.
For each numerical example, this Reynolds number will be precisely
defined and is the bifurcation parameter used in this study.
The weak formulation associated to equations [17] is written:

M(U) + L(U) + Q(U,U) — 2F =0 4)
where M is the mass matrix, L and Q are linear and quadratic oper-
ators: L contains the pressure and the diffusion terms while the con-
vective terms are contained in Q. The vector U is a concatenated
vector composed of the velocity u and the pressure p. The term AF
can be considered as an external load vector created by the bound-
ary condition on 9,€Q. One can refer to [17] for a complete presen-
tation of all these operators.

2.2. Stability analysis

The stability of the flow is studied by introducing a perturbation
AU(x,t) of the stationary term U°. This perturbation can be consid-
ered as a product of the spatial term V(x) by the temporal term e'®*:

AU(X,t) = V(x)e!* (5)

In expression (5), @ designates the pulsation of the periodic flow,
and V(x) stands for the complex mode of perturbation.

Introducing expression (5) into Eq. (4), and neglecting quadratic
and higher order terms in V, it becomes the following linear
system:

LU+ QU U5 —iFF =0 in Q

L(V)+Q(V,US) + QU V) +ioM(V) =0 in Q (6)

Vua=0 on 0,Q
A Hopf's bifurcation corresponds to a vector A = {U°,V, /,w} which is
the solution to Eq. (6). In the latter equations, V,, stands for the
velocity part of the concatenated vector V on the boundary 9,Q

where a velocity u, is imposed. Finally, the previous system is writ-
ten under the following form:

R(4)=0 inQ (7)

2.3. Bifurcation indicator

This section is devoted to the presentation of the bifurcation
indicator and of the asymptotic numerical method applied to the
search of Hopf's bifurcation points. All the elements have already
been presented in [7,8] and the main ideas are outlined in this

paper.
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