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a b s t r a c t

In this paper, we study the performance of some finite volume schemes for linear shallow water equa-
tions on a rotating frame. It is shown here that some well-known upwind schemes, which perform well
for gravity waves, lead to a high level of damping or numerical oscillation for Rossby waves. We present a
modified five-point upwind finite volume scheme which leads to a low level of numerical diffusion and
oscillation for Rossby waves. The method uses a high-order upwind method for the calculation of the
numerical flux and a fourth-order Adams method for time integration of the equations and is consider-
ably more efficient than the fourth-order Runge–Kutta method that is usually used for temporal integra-
tion of shallow water equations in the presence of the Coriolis term. In the method proposed here, the
Coriolis term is treated analytically in two stages: before and after calculation of computational fluxes.
It is shown that the energy dissipation of the proposed method is considerably less than other upwind
methods that are widely used, such as the third-order upwind method.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Shallow flows exist in many cases in nature. In these flows, hor-
izontal scales are much larger than the vertical ones, the pressure
is close to hydrostatic, and the velocity profile has small changes
throughout the depth (e.g., [20]). They can be found in most shal-
low lakes, reservoirs, rivers, and oceans, and several types of atmo-
spheric flow.

In the past, considerable research has been performed on the
numerical simulation of shallow flows, and several high-resolution
schemes have been proposed for numerical solution of shallow
water equations (e.g., [23]). Finite volume schemes are a class of
numerical methods which are well known to inherently conserve
mass and momentum (in the absence of source terms). This is be-
cause these schemes are in the flux form, and the mass going out of
a computational control volume directly enters the adjacent cell.
Therefore, the mass, and similarly the momentum, are globally
conserved; e.g., when periodic boundary conditions are imposed.
Upwind finite volume schemes have been the most popular finite
volume methods for hyperbolic systems in the past because they
can capture discontinuities within a few computational cells with
a low level of numerical diffusion and oscillation. The critical stage
in finite volume schemes is the computation of the numerical flux,
and numerous schemes have been developed for estimation of this.

In upwind finite volume methods, the characteristics of the
hyperbolic system are used to calculate the numerical flux. For a
scalar advection equation, this simply becomes a discretization of
the equation in the flow direction, i.e., using the values of the cells
in the upstream direction. However, when a system of equations is
considered, the flow direction is not the only parameter in the
computation of numerical flux. In this case, the flux vector is
decomposed on the basis of the eigenvectors, and then each com-
ponent is discretized using an upwind method, i.e., based on the
direction of the corresponding eigenvalue.

Shallow water equations, in the absence of viscous terms, can
be considered to be a hyperbolic system. Extensive studies have
been conducted to improve the performance of upwind schemes
for the shallow water system, especially in the cases where gravity
effects are dominant, such as shock waves. Upwind finite volume
schemes have been successfully developed for the simulation of
some challenging problems concerning shallow waters, such as
supercritical flows over spillways and dam break flows [17].
Simulation of such problems without numerical oscillation is be-
yond the capability of most other existing schemes. However, a
major problem of upwind methods with shallow water systems
is an imbalance between the flux and source terms at the discrete
level, and extensive studies have focused on this issue (e.g.,
[13,14,18]).

On the other hand, shallow water systems also exist in many
other natural circumstances, including oceanic and atmospheric
circulations (e.g., [20]). In such cases, in addition to the convective
terms, the Coriolis effect also plays an essential role in the flow
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pattern. Indeed, the shallow water system allows for several
waves, such as gravity, inertio-gravity, and Rossby waves, which
have completely different structures. For example, the phase
speeds of these waves are largely different; gravity waves propa-
gate with a relatively fast speed, while Rossby waves are very slow.
Accurate simulation of all waves is a delicate problem for most
available schemes. In general, upwind schemes perform very well
for gravity and shock waves, but as shown in Mohammadian and
Le Roux [15], they are too diffusive for Rossby waves. On the other
hand, centered schemes perform better for slow modes such as
Rossby waves, but they present poor performance for gravity and
shock waves. The application of upwind schemes for rotation-dom-
inated cases still needs to be studied. For example, the phase speed
of Rossby waves and their damping due to numerical schemes is an
important issue in oceanic and atmospheric circulation modeling
[12]. Indeed, most energy transfer in the ocean and atmosphere
is performed by Rossby waves. Therefore, damping of Rossby
waves beyond a certain level is undesirable and leads to erroneous
results. On the other hand, in oceanic and atmospheric circulations,
small-scale and fast gravity waves are mainly considered as noise
which do not play an essential role in energy transfer and general
circulation. Therefore, in order to increase stability, it is usually
desirable to damp noises, which is perfectly done by upwind
schemes. Thus, a desirable scheme for the purpose of simulation
of general circulation should present a low level of damping of
the Rossby waves, while damping noises.

A large number of studies have been conducted in the past to
evaluate the performance of various schemes for Rossby waves
[21,2,4,22,5,9,10,16]. Le Roux and Carey [8] studied the least-
square finite volume method and showed that it leads to a high le-
vel of damping compared to the Galerkin scheme for the case of
gravity and Rossby waves, and they concluded that while the stag-
gered grid presents better results in terms of damping, this scheme
should be used with care, particularly for long term simulations
due to its numerical damping. Mohammadian and Le Roux [15]
performed a one-dimensional Fourier analysis for a class of upwind
schemes, and concluded that the j scheme along with the second-
order Runge Kutta method, while having a good performance for
gravity waves, is not a good choice for Rossby waves. However, a
‘‘universal scheme’’ is not available with optimal performance for
all flow scales, and therefore the employed numerical method
should be chosen based on the targeted flow regime. On the other
hand, noting that the Coriolis term is a source term, an imbalance
between the flux and source terms in the upwind method arises in
the case of Rossby waves as well, and makes their simulation with
upwind methods even more complicated.

In this paper, we study the performance of some finite volume
schemes for linear SW equations on a rotating frame. As we will
show, the selected upwind schemes lead to either a high level of
damping for Rossby waves, or numerical oscillations due to an
imbalance between the flux and source terms. We then present a
modified high-order upwind scheme which leads to accurate re-
sults for both Rossby and gravity waves. It is also shown that an
analytical solution for the Coriolis term leads to good results for
Rossby waves. Furthermore, we show that the fourth-order Adams
method, which has been rarely if ever used with upwind schemes
for shallow water equations, is a good and computationally effi-
cient alternative to the commonly used high-order Runge–Kutta
scheme for time integration. As mentioned before, the focus of this
paper is on the Coriolis term. Since the Coriolis term remains linear
in the full nonlinear system, the scheme presented here for the
Coriolis term may be also applicable to nonlinear cases. The treat-
ment of other terms such as bed friction and topography is a sep-
arate issue and traditional methods such as upwind discretization
of source terms may be used for them (see e.g. [19]). The extension
of the method to nonlinear equations is currently in progress by

the authors and promising preliminary results have been obtained
which will be presented in a subsequent paper. However, it should
be mentioned that the linear SW equations are also important be-
cause they appear in multi-scale equations developed recently for
some atmospheric flows (see e.g. Khouider and Majda [6]) and
their solution is a challenging issue. They also appear in spectral
methods based on vertical mode decomposition in the atmosphere
(see e.g. [11]).

This paper is organized as follows. In Section 2 the shallow
water equations are presented. Section 3 explains the finite volume
methods where the computational details for the treatment of var-
ious terms are discussed. In Section 4 some numerical results are
presented to compare the proposed method with other available
upwind schemes. Some concluding remarks complete the study.

2. The shallow water equations

The 2-D linear SW equations in a conservative form may be
written as ([20])
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where g is the water surface elevation, u and v are the velocity com-
ponents, g is the gravitational acceleration, and (H + g) is the total
water depth. The term S may include various source terms such
as bed roughness, Coriolis, and topography. Since this paper concen-
trates on Rossby waves, the source term S is assumed to include the
Coriolis parameter
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We can also write the system in the following non-conservative
form
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The matrix A has three real eigenvalues, given by

k1 ¼
ffiffiffiffiffiffi
gH

p
ð6Þ

k2 ¼ �
ffiffiffiffiffiffi
gH

p
ð7Þ

k3 ¼ 0 ð8Þ

and the following corresponding eigenvectors:
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The matrix A is then decomposed as

A ¼ PDP�1 ð10Þ
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