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A B S T R A C T

Regular consumption of certain foods has shown beneficial effects on cardiometabolic health. However, it is not
clear by which molecular mechanisms they may exert their beneficial effects. Many genomic experiments
available in public databases have generated gene expression data following the treatment of human cells with
different food nutrients. Exploration of such data offers great possibilities for gaining insights into the molecular
effects of nutrients at cellular level. In this work, we explored the genomic responses triggered by food bioactive
compounds with well-known healthy properties. We show that human cell lines treated with different food
compounds tend to cluster in a cell type dependent manner based on gene expression, with an influence of the
physiological attributes of cells. Finally, we identify a genomic signature of 18 genes implicated in cell cycle,
which may characterize a protective effect of certain food compounds against cancer. Our data provides evi-
dence that nutrigenomic studies found in public databases can be used to discover novel signatures of gene
expression and identify common mechanism of actions of food bioactive compounds.

1. Introduction

Nutritional genomics, also known as nutrigenomics, is a relatively
new science which explores the effects of nutrients on the genome,
proteome and metabolome. Whereas the idea of modulating human
health by food intake is a millennial concept, there are great expecta-
tions on the tremendous potential this science may have to change the
future of dietary guidelines in order to improve health and hence to
build up a precision nutrition era (DeBusk, Fogarty, Ordovas, &
Kornman, 2005).

A functional food has been defined as “any modified food or food
ingredient that may provide a health benefit beyond that of the tradi-
tional nutrients it contains” (Snetselaar, 1994). During the last 20 years
there have been substantial efforts to identify bioactive compounds in
food which might be associated with beneficial biological activities. For
example compounds such as long-chain polyunsaturated fatty acids (n-
3 PUFAS), which consumption has been associated with a reduced risk
of cardiovascular disease, are known to act as ligands for cellular re-
ceptors to trigger a signaling cascade that inhibits the expression of
proinflammatory genes (Ferguson, 2009). Also, many natural products,

extracted from foods used in human diet, have shown great potential as
anti-proliferative agents on cultured cancer human cells (Gonzalez-
Vallinas et al., 2013; Ramirez de Molina et al., 2015). Indeed, a wide
range of drugs for treating diseases such as diabetes and cancer are
derived from natural products. Interestingly, some food compounds
have proved their ability to interact with the epigenome, thus mod-
ifying microRNA expression (Gil-Zamorano et al., 2014). However, the
molecular mechanisms by which food bioactive compounds exert their
beneficial effects are still not well understood.

Omics technologies are widely adopted to study the expression of
thousands of genes and proteins at a time. These technologies generate
a vast amount of gene expression data that accumulates in public re-
positories such as the NCBI Gene Expression Omnibus (GEO) (Barrett
et al., 2013). Whereas these data remains unclassified by phenotype or
experimental condition, the user interface allows easily querying and
mining the database for experiments.

Other databases such as the Broad Institute's Connectivity Map
(CMap) (Lamb et al., 2006) collect highly specific expression data from
cell lines treated with drugs and other chemicals. Such type of tran-
scriptomic data has previously been utilized to establish functional
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connections between drugs, genes and diseases using computational
approaches. From a transcriptomic point of view, mathematical models
have already been applied on gene expressions data for the identifica-
tion of pathway responsiveness to drugs (Pratanwanich & Lio, 2014).
Another approach allows the generation of a list of drugs triggering a
similar gene expression pattern at cellular level (Lee et al., 2012) and
thus possibly sharing a common mechanism of action. From a disease
point of view, other approaches consider that a particular gene ex-
pression signature (GES) related to a disease might be reverted using a
drug which triggers an opposite GES (Setoain et al., 2015), showing
promising opportunities within the drug repositioning field (Jia et al.,
2016). Artificial intelligence, and specifically deep learning algorithms,
has been applied on large transcriptional response data sets with the
aim of classifying various drugs to therapeutic categories solely based
on their transcriptional profiles (Aliper et al., 2016). However, to the
best of our knowledge there is no evidence about such approaches
applied to the emerging field of nutrigenomic studies, seeking to in-
vestigate the effect of food and nutrients on gene expression.

We extracted from GEO repository all the available experiments
related to nutrigenomics in human cells to survey the gene expression
patterns. The correlation of gene expression patterns can show potential
connections between bioactive compounds, indicating that they may
share a common mechanism of action, and allowing the discovery of
new potential therapeutic molecules (Lamb et al., 2006). Here we
present a comprehensive data mining analysis of a set of nutrigenomics
experiments extracted from GEO database. The assessment of human
cell's gene expression cultured in vitro after treatment with bioactive
compounds obtained from food should lead to a better characterization
of the molecular mechanisms that confer a beneficial effect to certain
food products.

2. Materials and methods

2.1. Data collection and analysis

Studies corresponding to nutrigenomics were identified from GEO
database. Specific queries were launched containing words such as
“nutrient”, “nutrition”, “natural product”, “extract” and “phytochem-
ical”. For data corresponding to Affymetrix platforms, raw data was
downloaded and normalized locally with the RMA algorithm using
specific Bioconductor packages. For data generated by other platforms,
the normalized matrix was directly downloaded for analysis. Gene
differential expression was assessed using LIMMA package from
Bioconductor.

2.2. Hierarchical clustering

A hierarchical clustering algorithm was applied using gene’s log2
fold change (FC) from each analyzed experiment as input values. A
distance matrix was computed among all the experiments within the
database, using the Euclidean distance as a metric. The agglomeration
method of the clustering process was set to complete. Heatmaps.2 li-
brary was used for dendrogram and heatmap generation. All the sta-
tistical computations were performed using R software. To evaluate the
batch effects presence, normalized gene average expression data for
each experiment was used as data input for hierarchical clustering
analysis.

2.3. Functional enrichment

Genecodis3 software was used for functional enrichment using de-
fault parameters and selection of GO Biological Process as target an-
notations.

2.4. Statistical analysis

Moderated t-test statistics were applied to microarray features once
a linear model was fitted. Statistical significance of the overrepresented
GO biological processes in our target gene list was obtained with chi-
square test. False discovery rate (FDR) method was employed to adjust
the obtained p-values.

3. Results

3.1. Data collection

Experimental gene expression data corresponding to nutrigenomics
experiments was identified from GEO database by launching specific
queries. Results were filtered in order to obtain gene expression data
from Homo sapiens as organism, and expression profiling by array as
study type. Few of these studies, corresponding to human nutritional
interventions with large cohorts, were filtered out since we were strictly
interested on experiments performed on cultured cells. We initially
identified 71 potential GEO studies (Table S1) to be included in our
analysis. Of those, 34 studies were filtered out due to different criteria
such as studies corresponding to human interventions, lack of replicates
in the experimental designs, expression data obtained with rare or
custom arrays, and expression data corresponding to micro RNA’s. We
ended up with a set of 37 GEO studies.

3.2. Gene expression analysis workflow

Experiments included in each study were carefully assessed before
analysis in accordance with their experimental design, by manually
assigning control and perturbation samples. That is to say, for each
experiment their appropriate control was obtained within the same
study. Subsequently, a common computational analysis workflow ap-
plying linear models was used to assess differential expression in each
experiment. Finally, microarray features were annotated with Gene
Symbol and Entrez gene identifiers to allow cross-platform data in-
tegration. Thus, we obtained a database which includes gene differ-
ential expression data from 81 comparisons among different com-
pounds, treatments and cell types (Fig. 1) that arise from the 37 GEO
studies.

3.3. Cluster analysis

The clustering has been performed using log2 fold change (FC) ex-
pression values obtained following the gene expression analysis work-
flow. After removing missing values and aggregating expression values
for duplicate gene ID's, we proceeded to integrate gene expression data
from all the microarray platforms used in our database. Our database
included expression data obtained from 19 distinct microarray plat-
forms. A first limitation is that only overlapping genes represented in all
platforms could be used in our analysis. Therefore, we used the corre-
sponding Entrez gene ID of the features screened in each platform for
data integration. Indeed, gene symbols can be hard to match across
platforms because of the continuous updates of gene names, as well as
the many to one relationship issues where different gene symbols might
correspond to the same gene.

We ended up with a log2 FC expression matrix of 15,591 genes
among 81 variables (experiment comparisons). Such an expression
matrix included NA values corresponding to the genes that were absent
in a microarray platform. With the aim of grouping experiments which
trigger similar gene expression profiles across the studied cell lines and
treatments, we performed a hierarchical clustering on the nu-
trigenomics gene expression matrix obtained from our database
(Fig. 2).

We observed in the cluster dendrogram that the most remarkable
property is that, as previously observed (Lamb et al., 2006), cell lines
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