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a b s t r a c t

We introduce two new approaches called the simplified and the modified simplified ghost point treat-
ments for solving the 2D compressible Euler equations near embedded boundaries for the Cartesian grid
method. These approaches are second order accurate for second order schemes near the embedded
boundaries, if the wall boundary is in the middle between fluid and ghost points. We assign values to
the ghost points near embedded solid boundaries from mirror points in the fluid to reflect the presence
of the solid boundaries. In the simplified ghost point treatment, we consider the closest grid points on the
grid lines through the ghost points in the x- and y-directions as the mirror points of the ghost points
depending on which directions are closest to the directions normal to the embedded boundaries. In
the modified simplified ghost point treatment, we choose mirror points not only on the grid lines through
the ghost points in the x- or y-directions, but also on the diagonals through the ghost points. The prim-
itive variables at the mirror points are mirrored to the ghost points using local symmetry boundary con-
ditions. The simplified ghost point treatments at embedded boundaries are tested for supersonic flow
over a circular arc airfoil and a circular cylinder. Applications to supersonic flow over multiple circular
cylinders and a 2D model of the F-22 fighter aircraft demonstrate the flexibility of the ghost point treat-
ments. Another advantage of these new approaches is that they are easily extendable to higher order
methods and to 3D. The Cartesian grid method requires a larger number of grid points than the standard
body-fitted grid method. We found a good agreement between the results obtained with the simplified
and the modified simplified ghost point treatments and the reference solutions in the literature.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The Cartesian grid method has recently become one of the
widely used methods in CFD, cf. [1] for a review. This is due to
its simplicity, faster grid generation, simpler programming, lower
storage requirements, lower operation count, and easier post pro-
cessing compared to body-fitted structured and unstructured grid
methods. The Cartesian grid method is also advantageous in con-
structing higher order methods. Problems occur at the embedded
boundary, when this method is applied to complex domains [2–
4]. When the Cartesian grid method is applied at curved embedded
boundaries, the cells at the embedded boundaries are not rectan-
gular and these cut-cells create problems for the scheme to be
implemented.

One method to solve the time step restriction problem caused
by small cut-cells is to merge the cut-cells with neighboring cells
[1,5]. The advantage of the cut-cell method is that it ensures con-
servativity, because a conservative method is used up to the

embedded boundary where the normal velocity is set equal to zero.
This approach requires a lot of effort to calculate the fluxes for all
the cut-cells near the embedded boundary. Another approach to
deal with irregular cells near the embedded boundary is to use
the h-box method [6]. The basic idea of the h-box method is to cal-
culate the fluxes at the faces of the small cells without reducing the
time step determined by the stability condition for the Cartesian
grid method with mesh size h. Apart from that, a new approach
called Building-Cube Method has been introduced [7]. In this
method, a high density mesh is proposed on the Cartesian grid.
The wall boundary is approximated by a staircase and local Carte-
sian grid blocks called building cubes are used to capture the fea-
tures in the boundary layer with high resolution. With the
Building-Cube Method, complex geometries can be treated, adap-
tive grids can be used, and higher order schemes can be imple-
mented. Recently, hybrid methods have been developed to treat
embedded boundaries. The Cartesian grid method is combined
with the gridless method near embedded boundaries [8–10].

Another approach is to use ghost points at the embedded
boundary. In this method, symmetry conditions with respect to
the embedded boundary are imposed at ghost points in the solid
adjacent to the embedded boundary [11–13]. However,
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conservativity is lost in this process. Nevertheless, the simplicity of
the ghost point treatment has motivated us to use the ghost point
treatment instead of the more complicated approaches mentioned
above.

The goal of the present study is to analyze the accuracy of the
Cartesian grid method and to introduce new ghost point ap-
proaches called the simplified and the modified simplified ghost
point treatments for the 2D compressible Euler equations. For spa-
tial discretization, we use the local Lax–Friedrichs method and the
MUSCL approach [14] with the minmod limiter. The first order ex-
plicit Euler and the third order TVD Runge–Kutta (RK3) methods
are used for time integration. For the 2D compressible Euler equa-
tions, we compare the results of the new approach called the sim-
plified ghost point treatment with the results of a body-fitted grid
method for supersonic flow over a circular arc airfoil. Then, we
compare our results with the results presented in the literature
for supersonic flow over a circular cylinder [13]. The modified sim-
plified ghost point treatment is applied to a moving shock wave
over a circular cylinder. We compare the results of the modified
simplified ghost point treatment with those by Luo et al. [8] ob-
tained with a hybrid Cartesian grid and gridless method. The flex-
ibility of the simplified and the modified simplified ghost point
treatments is demonstrated for supersonic flow over three circular
cylinders and a 2D model of the F-22 fighter aircraft.

The paper is organized as follows. In Section 2, the 2D com-
pressible Euler equations and boundary conditions are introduced.
An outline of the discretization techniques is given in Section 3. In
Section 4, the flagging strategy and the simplified ghost point
treatment at embedded boundaries are explained. The modified
simplified ghost point treatment is introduced in Section 5. Results
of applications to external aerodynamics are discussed in Section 6.
In the end, conclusions are drawn in Section 7.

2. Compressible Euler equations

The 2D compressible Euler equations in conservative form read

@U
@t
þ @F
@x
þ @G
@y
¼ 0; ð1Þ
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with q, u, v, E, and p denoting density, velocity components in x-
and y-directions, total energy per unit mass and pressure,
respectively.

For perfect gas, we have the following relation

p ¼ ðc� 1Þ qE� 1
2
qðu2 þ v2Þ

� �
; ð3Þ

where c is the ratio of specific heats. We consider c = 1.4 for air.
For supersonic flow in the x-direction, the conservative vari-

ables at the left boundary x = xa are given as Dirichlet boundary
conditions U(xa,y, t) = g(y, t), cf. Fig. 1. No boundary conditions must
be given at the right boundary x = xb, because the flow is
supersonic.

Symmetry boundary conditions at the symmetry boundary y = 0
imply:

ðq;qu;qEÞðx; y; tÞ ¼ ðq;qu;qEÞðx;�y; tÞ; ð4Þ

and

qvðx; y; tÞ ¼ �qvðx;�y; tÞ: ð5Þ

Extrapolation boundary conditions are assumed at the upper
boundary y = yd:

@U
@y
¼ 0 ð6Þ

If the lower boundary is not a symmetry boundary, we also assume
extrapolation boundary conditions (6) there.

3. Discretization

3.1. Spatial discretization

We assume a rectangular domain [xa,xb] � [yc,yd] and a
(I + 1) � (J + 1) Cartesian grid with equidistant grid spacing
Dx = (xb � xa)/I and Dy = (yd � yc)/J. The Cartesian coordinates of
the grid points (i, j) are (xi,yj), where xi = xa + iDx, i = 0, 1, . . . , I and
yj = yc + jDy, j = 0, 1, . . . , J.

The node-centered finite volume method yields the following
semi-discretization of the 2D compressible Euler Eq. (1)
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where Ui,j is the approximation of the average of U in the cell
Xi;j ¼ xi � Dx
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If we interpret (7) as a conservative finite difference method, Ui,j is
an approximation of the exact solution U(xi,yj, t). Fi�1

2;j
and Gi;j�1

2
are

numerical fluxes for the 2D compressible Euler equations. The vec-
tor of the conservative variables U and the flux vectors F and G are
defined in (2). The numerical fluxes of the local Lax–Friedrichs
method for F and G are defined as follows

FlLF
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2
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GlLF
i;jþ1

2
¼ 1

2
½GðUi;jÞ þ GðUi;jþ1Þ �maxðjv i;jþ1j þ ci;jþ1; jv i;jj þ ci;jÞ

� ðUi;jþ1 � Ui;jÞ�: ð10Þ

In Eqs. (9) and (10), c is the speed of sound. The CFL number for the
2D compressible Euler equations is defined as CFL ¼
Dtmaxi;j

jui;j jþci;j

Dx þ jv i;j jþci;j

Dy

� �
. We choose CFL = 0.5 in our numerical

solutions of the 2D compressible Euler equations. In (9), we replace
Ui,j by UL

iþ1
2;j

and Ui+1,j by UR
iþ1

2;j
using the MUSCL approach [14] with

the minmod limiter to obtain higher order accuracy and also to
avoid undesired oscillations. The extrapolated variables are defined
as

Fig. 1. Sketch of domain and Cartesian grid for supersonic flow over a circular arc
airfoil.
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