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a b s t r a c t

Direct evaluation of energy spectra in purely Lagrangian meshless methods is a challenging task. On the
other hand, improvement of turbulence modeling in a Lagrangian framework relies strongly on our abil-
ity to estimate energy spectra up to the maximally resolved wavenumber. In this paper we compare dif-
ferent strategies to extract energy spectra from a velocity field defined on a scattered set of points.
Spectra can be directly evaluated from irregularly distributed sample by using Discrete Fourier Transform
(DFT) and their regularized versions. Alternative procedures require a preliminary interpolation into a
grid where, on a second stage, a Fourier analysis can be performed. As a last approach a Moving Least
Squares (MLSs) technique for preliminary interpolation is investigated and the results are discussed.
Although exhibiting good accuracy in the low-moderate wavenumber window, the first two strategies
introduce unacceptable large errors in the near-maximal-resolved wavenumber, where the highest accu-
racy is often required. Here we propose a second-order Moving Least Squares (MLSs) scheme as an opti-
mal tool that allows us to reproduce precisely the energy spectrum over the entire wavenumber window.
We discuss the importance of this result with respect to the development of accurate turbulence models
for purely Lagrangian meshless methods.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Turbulence modeling is the key issue for most computational
fluid dynamics simulations. Several turbulence models were devel-
oped in the past for grid-based Eulerian methods, but little pro-
gress has been made in the context of a Lagrangian framework.
Although meshless Lagrangian methods have been developed since
more than 30 years, turbulence modeling in a purely Lagrangian
framework has been studied only recently. Wagner and Liu have
derived multiple scale sub-grid models for Reproducing Kernel
Particle Method (RKPM) [1]. In 2004, Shao and Gotoh applied a tur-
bulence model [2] to Moving Particle Semi-implicit method (MPS),
a scheme proposed originally by Koshizuka and Oka in [3]. A
Lagrangian meshless method for hydrodynamic flow problems
which is receiving increasing attention is Smoothed Particle
Hydrodynamics (SPH) [4]. Although the early development of
SPH is dated back to the 1970s, its first application to the study
of compressible turbulent flows has been presented by Welton
and Pope [5] who in 1997 coupled the scheme with a Monte Car-
lo/PDF (probability density function) method. In 2002, Monaghan
proposed an SPH version of the a-model [6] devised initially by

Foias et al. to describe compressible turbulent flow [7]. In 2003, a
very interesting LES approach for SPH turbulence modeling has
been presented by Pumir and Shraiman [8]. Recently, Violeau
and Issa solved a set of SPH–RANS equations based on an eddy vis-
cosity model (EVM) commonly used in classical CFD [9].

Although much effort have been devoted in the past to test
the effect of Lagrangian turbulent models in complex free-sur-
face flows situations, few systematic studies have been con-
ducted under isotropic turbulence. A simple but strong
benchmark case that allows us to test the accuracy of different
turbulent models is provided by the energy spectrum analysis
under homogeneous isotropic turbulent flow conditions [10].
Unfortunately, until now accurate results can be obtained only
in the low-to-moderate wavenumber range (large scale motion).
The drawback lies in the post-processing analysis and it is
mainly due to the fact that velocity field defined on a scattered
set of data (particle positions) must be interpolated first on a
grid, introducing uncontrollable errors specially near the maxi-
mal resolved wavenumber.

In [11], an SPH interpolation was employed to map the velocity
field from scattered positions onto a grid and then FFT routine was
applied to extract the energy spectrum. An alternative idea is to
avoid interpolation and use DFT to direct calculate the energy spec-
trum from the scattered data [12]. Both methods introduce large
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errors in high wavenumber range, masking out therefore all the ef-
fects caused by the adopted turbulent model. It should be re-
marked that the correct description of the sub-grid energy
transfer in the near maximal-resolved regime is critical in large
eddy simulations to discriminate among turbulence models [13].
As a consequence, an advanced data analysis, i.e. a stage of recon-
struction of the whole flow field which does not introduce spurious
effects, plays a crucial role in determining the accuracy of turbu-
lent models developed for Lagrangian meshless methods. The pre-
sented work aims at establishing a most accurate and reliable
method for reconstructing the spectra from scattered data. As a re-
sult of the analysis performed here, we propose a second-order
moving-least-squares (MLSs) interpolation scheme as an optimal
tool that allows to reproduce exactly the energy spectrum (up to
the maximal resolved wavenumber) of a predefined velocity field
on a scattered set of data. The presented tool can be directly ap-
plied to analyze the performance (and the accuracy) of the existing
turbulence model for Lagrangian methods.

The paper is organized as follows. In Section 2, the Kolmogorov
theory and the formulations of spectra are introduced. In Section 3,
five methods, namely DFT, regularized DFT, SPH interpolation, Re-
meshed interpolation and MLS, which are used to calculate the en-
ergy spectrum in this work, are discussed. The performance of the
five methods are compared in Section 4. Finally, conclusions are gi-
ven in Section 5.

2. Formulation of energy spectrum

A stringent benchmark for turbulence models is represented by
their ability to reproduce the correct energy spectrum under
homogeneous isotropic turbulent conditions up to the maximally
resolved wavenumber. A turbulent flow is characterized by a hier-
archy of scales through which the energy cascade takes place. The
dissipation of kinetic energy takes place finally at scales of the or-
der of Kolmogorov length where the flow becomes laminar, while
the injection of energy in turbulent flow occur generally at much
larger scales. The range between these two scales is the so called
inertial range, where the kinetic energy is essentially not dissi-
pated by the viscosity, but it is merely transferred to smaller scales
via a non-linear mechanism presented in the Navier–Stokes equa-
tion, until viscous effects become important. Within this range,
inertial effects are much larger than viscous effects, and it is rea-
sonable to assume that viscosity does not play a role. Through
dimensional analysis, Kolmogorov derived the so-called 5/3 law,
namely the energy spectrum E(k) must fall off as k�5/3 for 3D iso-
tropic turbulence. His findings have been supported by consider-
able experimental evidence.

The standard way to evaluate E(k) in grid-based methods is
through application of FFT to the velocity field. Let v(r) be the
velocity field defined in the whole physical space L3. The integral
Fourier transform of v(r) is defined as

VðkÞ ¼ 1
L

� �3 Z
e�ik�rvðrÞdr ð1Þ

with dr = dxdydz in 3D and dr = dxdy in 2D. Using these definitions
the velocity spectrum is defined as

EðkÞ ¼ 1
2
jVðkÞ � V�ðkÞj ð2Þ

where V⁄ is the complex conjugate of the transformed velocity.
k = (kx,ky,kz) is the wavenumber vector. The energy spectrum E(k)
in isotropic situations can be defined as

EðkÞ ¼ 4pk2hEðkÞi;3D ð3Þ
EðkÞ ¼ 2pkhEðkÞi;2D ð4Þ

where <. . .> denotes averaging over a thin spherical shell of radius
k = jkj. Although this strategy presents no problem for grid-data,
problems arise while dealing with scattered set of points.

3. Methods

In this section we discuss five different numerical approaches to
calculate the energy spectrum from irregularly distributed sam-
ples. These methods can be divided in two general classes, adopt-
ing, respectively, the following strategies: (1) the energy spectrum
is directly calculated from the scattered samples; (2) the velocity
field is first estimated on the grid and then Fast Fourier Transfor-
mation (FFT) applied.

3.1. Discrete Fourier Transform methods

In order to obtain the full information over the entire wave-
number range without preliminary interpolation, Discrete Fourier
Transform (DFT) of velocity field can be employed. In the following
we review two popular approaches highlighting advantages and
drawbacks.

3.1.1. Standard Discrete Fourier Transform
In a standard Discrete Fourier Transform (DFT) method, the

DFT of a the velocity field v(r) defined on a scattered set of points
rj, (j = 1, . . . , N) is defined as
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which, in a simplified form reads

V ¼ B � v ð6Þ

where B is the matrix of e�ir�k. The inverse Fourier Transform is
written as

v ¼ 1
N
� BH � V ð7Þ

If we insert Eq. (7) into Eq. (6), we obtain V ¼ 1
N � ðB � B

HÞ � V
which holds, only when

1
N
� ðB � BHÞ ¼ I ð8Þ

in other words, B must be orthogonal and BH = N � B�1. When the
points are on the grid, Eq. (8) holds exactly, however if they are dis-
ordered, 1

N � ðB � B
HÞ – I generally, and DFT suffers from an ill-posed

problem for a scattered set of data.

3.1.2. Regularized discrete fourier transform
Tikhonov regularization [14,15] is the most commonly used

regularization method to solve the ill-posed problems mentioned
above. For the DFT, we have 1

N � B
H � V ¼ v and a linear least squares

is proposed in the attempt to minimize the residual

k 1
N
� BH � V � vk2 ð9Þ

when BH is ill-conditioned or singular. In this latter case this strat-
egy does not produce any improvement with respect to the original
DFT problem. Therefore the regularization term is included in the
minimization and a Tikhonov regularization is performed to find
the solution that minimizes the following objective function:

WðVÞ ¼ k 1
N
� BH � V � vk2 þ kCVk2 ð10Þ
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