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a b s t r a c t

This paper reports an analytical and numerical study of natural convection in a shallow rectangular cavity
filled with a micropolar fluid. Neumann boundary conditions for temperature and concentration are
applied to the horizontal walls of the enclosure, while the two vertical ones are assumed insulated.
The governing parameters for the problem are the thermal Rayleigh number, Ra, Prandtl number, Pr,
Lewis number Le, buoyancy ratio, u, aspect ratio of the cavity, A, and various material parameters of
the micropolar fluid, K, B, k and n. For convection in an infinite layer (A� 1), analytical solutions for
the stream function, temperature, concentration and microrotation are obtained using a parallel flow
approximation in the core region of the cavity and an integral form of the energy and constituent equa-
tions. The critical Rayleigh numbers for the onset of supercritical and subcritical convection are predicted
explicitly by the present model. Also, results are obtained from the analytical model for finite amplitude
convection for which the flow and heat transfer are presented in terms of the governing parameters of the
problem. Numerical solutions of the full governing equations are reported for a wide range of the govern-
ing parameters. A good agreement is observed between the analytical model and the numerical simula-
tions. The influence of the material parameters on the flow and heat and solute transfers is demonstrated
to be significant.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Micropolar fluid theories were introduced by Eringen (see for
instance Eringen [1–4]), in order to deal with a class of fluids which
do not satisfy the Navier–Stokes model. Examples of applications
of such fluids include the behavior of colloidal suspensions or
polymeric fluids (Hudimoto and Tokuoka [5]), liquid crystals
(Lockwood et al. [6]); animal blood (Ariman et al. [7]), exotic
lubricants (Eringen [4]), etc. An excellent review of the various
applications of micropolar fluid mechanics was presented by
Ariman et al. [8] and Ariman and Turk [9].

The onset of convective instabilities in a horizontal layer of a
micropolar fluid heated from below has been considered first by
Ahmadi [10]. A solution was obtained in the case of free boundaries
and it was demonstrated that the micropolar fluids are more stable
than the Newtonian one. The same problem was extended by Rama
Rao [11] who studied the onset of convection of a heat conducting
micropolar fluid layer confined between two horizontal rigid
boundaries. The effects of non-uniform temperature profiles on
Marangoni convection in micropolar fluids confined between a
lower rigid isothermal boundary and an upper free, constant heat
flux boundary was investigated by Rudraiah et al. [12]. It was also
demonstrated by these authors that micropolar fluids heated from

below are more stable when compared to the pure viscous fluid sit-
uation. More recently, Rayleigh-Bénard convection in a micropolar
ferromagnetic fluid has been investigated analytically by Abraham
[13] for a layer with free–free, isothermal, spin-vanishing magnetic
boundaries. The influence of the micropolar parameters on convec-
tion in the ferromagnetic case is similar to its role in the non-mag-
netic fluid case. More recently, the effect of a non-uniform basic
temperature gradient on the onset of Marangoni convection in a
horizontal micropolar fluid layer was considered by Melviana
et al. [14]. It was assumed that the layer is bounded below by a ri-
gid plate and above by a nondefornable free surface subjected to a
constant heat flux. At these boundaries the microrotation was as-
sumed to be vanished. The influence of various parameters on
the onset of convection is discussed. Also, a linear stability analysis
was performed by Idris et al. [15] to study the effect of non-uni-
form basic temperature gradients on the onset of Benard–Marang-
oni convection in a micropolar fluid. The influence of various
parameters on the onset of convection has been analysed by these
authors. It was found that the presence of micron-sized suspended
particles delays the onset of convection.

All the above studies are concerned with convective flows in-
duced by thermal gradients solely. However, in practice micropolar
fluids may additionally have salt dissolved in it such that there are
potentially two destabilizing sources for the density difference.
Depending on how the temperature and mass fraction gradients
are oriented relative to one another, the dynamics of convection
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in such fluids can be very different from those driven only by ther-
mal buoyancy. Most studies available on the onset of convection in
a micropolar fluid layer, induced by both thermal and solutal den-
sity gradients, are concerned with double diffusive convection. For
this situation the flows induced by the buoyancy forces result from
the imposition of both thermal and solutal boundary conditions on
the horizontal boundaries of the layer. Sharma and Kumar [16]
investigated the thermosolutal convection in a layer of electrically
conducting micropolar fluids heated and salted from below in the
presence of a uniform vertical magnetic field. It was found that
coupling between thermosolutal and micropolar effects may bring
overstability in the system. The same configuration was also con-
sidered by Sunil et al. [17], who derived an exact solution in the
case of a fluid layer contained between two free boundaries. The
influence of various parameters, like solute gradient and micropo-
lar parameters on the onset of convection are reported by these
authors. Another type of problems investigated in the field of nat-
ural convection in binary fluids is related to the phenomenon of
thermal diffusion, also known as the Soret effect. For this situation,
when a temperature gradient is applied to a binary mixture, ini-
tially homogeneous, thermal diffusion takes place, giving rise to
a solutal gradient. To the authors’ knowledge the only study re-
lated to the Soret effects on natural convection of a micropolar
fluid, due to Rawat and Bhargawa [18], is concerned with the case
of a vertical plate embedded in a Darcy porous medium. The influ-
ence of the Soret number on the problem was found to be signifi-
cant. However, concerning the onset of convection in a horizontal
layer of a micropolar fluid, no study on the influence of the Soret
effects on the onset of convection does seem to have been carried
out. This is the main motivation of the present investigation.

In the present paper, we consider natural convection in a hori-
zontal layer of a micropolar fluid with the horizontal boundaries
heated and salted from the bottom by constant fluxes (Neumann
boundary conditions). The paper is organized as follows. In the
next sections, the formulation of the problem is first presented.
An approximate analytical solution is then derived. A numerical

method of the full governing equations is proposed in the follow-
ing section. Results are then presented and discussed. The last sec-
tion contains some concluding remarks.

2. Mathematical formulation

The configuration considered in this study is a horizontal shal-
low cavity, of thickness H0 and width L0 filled with a micropolar
fluid (see Fig. 1). The origin of the coordinate system is located at
the center of the cavity with x0 and y0 being the horizontal and
vertical coordinates, respectively. Neumann boundary conditions
for temperature and concentration are applied to the horizontal
walls of the enclosure, while the two vertical ones are assumed
insulated. The fluid is assumed to satisfy the Boussinesq
approximation,with constant properties except for the density
variations in the buoyancy force term. The density variation with
temperature and concentration is described by the state equation
q ¼ q0 1� b0T T 0 � T 00

� �
� bCðC � C0Þ

� �
where q0 is the fluid mixture

density at temperature T 0 ¼ T 00 and mass fraction C = C0 and b0T
and bC are the thermal and concentration expansion coefficients,
respectively.

Nomenclature

A aspect ratio of the cavity, L0/H0

a integer number as a = 0 or 1
B microinertia parameter, H

02/j
C mass fraction of the reference component
D isothermal diffusion coefficient
D0 thermodiffusion coefficient
CS dimensionless concentration gradient in x-direction
CT dimensionless temperature gradient in x-direction
g gravitational acceleration
H0 height of fluid layer
j microinertia per unit mass
k thermal conductivity
K vortex viscosity parameter, j/l
L0 width of fluid layer
Le Lewis number, a/D
N dimensionless microrotation, N0H

02/a
Nu Nusselt number, Eq. (34)
n dimensionless microgyration parameter
Pr Prandtl number, m/a
q0 constant heat flux per unit area
Ra thermal Rayleigh number, gb0TDT 0H03=am
Rasub

C subcritical Rayleigh number, Eq. (32)
Rasup

C supercritical Rayleigh number, Eq. (31)
S normalized mass fraction, C/DC
Sh Sherwood number, Eq. (35)
t dimensionless time, t0a/H

02

T dimensionless temperature, T 0 � T 00
� �

=DT 0

u dimensionless velocity in x direction, (u0H0/a)
v dimensionless velocity in y direction, (v0H0/a)
x dimensionless coordinate axis, (x0/H0)
y dimensionless coordinate axis, (y0/H0)

Greek symbols
a thermal diffusivity
bC concentration expansion coefficient
b0T thermal expansion coefficient
l dynamic viscosity
m kinematic viscosity of fluid, l/q
u buoyancy ratio, bCDC=b0TDT 0

� �
k material parameter, c/(lj)
q density of fluid
W dimensionless stream function, W0/a
c spin gradient viscosity
j vortex viscosity

Subscript
0 reference state
c refers to critical conditions

Superscript
0 refers to dimensional variable

Fig. 1. Schematic diagram of the problem domain and coordinate system.
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