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a b s t r a c t

In this paper we propose to study open boundary conditions for incompressible Navier–Stokes equations,
in the framework of velocity-correction methods. The standard way to enforce this type of boundary con-
dition is described, followed by an adaptation of the one we proposed in [36] that provides higher pres-
sure and velocity convergence rates in space and time for pressure-correction schemes. These two
methods are illustrated with a numerical test with both finite volume and spectral Legendre methods.
We conclude with three physical simulations: first with the flow over a backward-facing step, secondly,
we study, in a geometry where a bifurcation takes place, the influence of Reynolds number on the laminar
flow structure, and lastly, we verify the solution obtained for the unsteady flow around a square cylinder.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Efficiently reaching an accurate solution to the unsteady incom-
pressible Navier–Stokes equations is difficult for two main reasons.
Firstly, the treatment of non-linearities and secondly, the determi-
nation of the pressure field which will ensure a solenoidal velocity
field. From all the methods that address this second matter we can
sort them in two categories: exact and approximative methods. In
the first one, there are all the methods based on the idea proposed
by Uzawa et al. [3], like those in [10,16]. In complex geometries or
three-dimensional domains, this turns out to be inappropriate
since its computational time costs become very high. Augmented
Lagrangian is an iterative method described by Fortin and Glowinski
in [14]. With this method computing the exact solution is possible
but also very costly. Nevertheless an accurate approximation of the
solution can be obtained with a small number of iterations. This
leads to faster computations but without exactly respecting the
incompressibility constraint. The method of interest in this article
is one of an another class of non-exact methods which consists in

decoupling the pressure from the velocity by means of a time-split-
ting scheme. This scheme significantly reduces the computational
cost of an approximate solution satisfying the incompressibility
constraint but with a diminished accuracy.

Since this last class of methods is widely used, a large number of
theoretical and numerical works have been published that discuss
their accuracy and the stability properties. The state of the art from
both theoretical and numerical points of view is described in the
review paper of Guermond et al. [20]. The most widespread meth-
ods are pressure-correction schemes developed by Chorin, Temam,
Goda and later by Timmermans et al. [7,42,17,43]. They require the
solution of two sub-steps for each time step. The pressure is trea-
ted explicitly in the first step in order to predict a velocity. Then, by
projecting the velocity onto an ad hoc space, the solenoidal velocity
and the pressure are computed. The governing equation on the
pressure or the pressure increment is a Poisson equation derived
from the momentum equation by requiring incompressibility. A
less studied alternative method known as the velocity correction
scheme, developed by Orszag et al. in [33], Karniadakis et al. in
[25], Leriche and Labrosse in [26] and more recently by Guermond
and Shen in [21], consists in switching the two sub-steps. All these
time-splitting schemes have very similar numerical characteristics,
but, numerical evidence show that velocity-correction schemes are
more stable compared with pressure-correction schemes. This has
been reported with high-order time discretization in [25] and with
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Navier–Stokes equations in [11]. In the latter, the authors propose
an unconditionally stable scheme with an original implementation
of the inertial term.

The majority of the studies based on these methods consider
only the Dirichlet boundary condition. However, in many applica-
tions such as free surface problems and channel flows, one also has
to deal with an outlet boundary condition which should not dis-
turb upstream flow. A large variety of this kind of boundary condi-
tion exists [44,39]. Hereafter we will present some results on the
open or traction boundary condition which is efficient for low Rey-
nolds number and fluid–structure interactions [27,8,19]. This
boundary condition was successfully used to compute various
flows such as those around a circular cylinder, over a backward fac-
ing step and in a bifurcated tube [27]. Bruneau and Fabrie pro-
poses, in [6], an evolution of the traction boundary condition
involving inertial terms.

With open or traction boundary conditions, to our knowledge,
several questions remain open specially when a time splitting
method is considered. Indeed, while no studies have been reported
with a velocity-correction scheme, a few have been done with
pressure correction schemes. Guermond et al., have proven in
[20] that only convergence rates between one and 3/2 in space
and time for velocity and 1/2 in space and time for the pressure
are to be expected with the standard incremental scheme. Févrière
et al. in [13] combines the penalty and projection methods to offer
better error levels. In [36] we presented an almost second-order
accurate version of the boundary condition and pressure-
correction scheme. We expect to have the same results with
velocity-correction schemes as the two are very similar.

The aim of this paper is to study open boundary conditions
using the velocity-correction version of the time splitting methods
for the incompressible Navier–Stokes equations. In the first part of
this article we describe the governing equations, the velocity-
correction schemes and the boundary conditions. Since their
numerical properties are independent from the treatment of
linearities, we only consider in this part Stokes equations. The
usual way to enforce this type of boundary condition on the
pressure increment is described along with an improvement we
proposed in [36] that gives a satisfactory order of convergence
for both pressure and velocity. In a second section, we illustrate
numerically the behaviour of the standard methods and the
proposed method with a manufactured case with both a finite vol-
ume and a spectral Legendre method. Finally, in the last section,
we study three physical simulations. In the first, we study the flow
over a backward-facing step. In the second, we study the influence
of the Reynolds number on the laminar flow structure in a geom-
etry where a bifurcation takes place. In the third, we verify the
solution obtained for unsteady flow around a square cylinder.

First of all let us specify some notations. Let us consider a
Lipschitz domain X � IRd, (d = 2 or 3), the generic point of X is
denoted x. The classical Lebesgue space of square integrable
functions L2ðXÞ is endowed with the inner product:

ð/;wÞ ¼
Z

X
/ðxÞwðxÞ dx

and the norm:

kwkL2ðXÞ ¼
Z

X
jwðxÞj2dx

� �1
2

:

We break the time interval ½0; t�� into N subdivisions of length
Dt ¼ t�

N, called the time step, and define tn ¼ nDt, for any
n; 0 6 n 6 N. Let u0;u1; . . . ;uN be some sequence of functions in
E ¼ L2. We denote this sequence by uDt , and we define the follow-
ing discrete norm:

jjuDt jjl2ðEÞ ¼ Dt
XN

k¼0

jjukjj2E

 !1
2

ð1:1Þ

In practice the following error estimator can be used:

jjujj2Eðt�Þ ¼ jjuð�; t�ÞjjE ð1:2Þ

Finally, bold Latin letters like u,w, f, etc., indicate vector valued
quantities, while capitals (e.g. X, etc.) are functional sets involving
vector fields.

2. Governing equations

Let X be a regular bounded domain in IRd with n the unit nor-
mal to the boundary C ¼ @X oriented outward and s the associated
unit tangent vector. We assume that C is partitioned into two por-
tions CD and CN . Our study consists, for a given finite time interval
½0; t�� in computing velocity u = u(x, t) and pressure p = p(x, t) fields
satisfying:

q@tu� lDuþrp ¼ f in X��0; t�� ð2:3Þ
r � u ¼ 0 in X��0; t�� ð2:4Þ
u ¼ g on CD��0; t�� ð2:5Þ
lru� pIð Þ � n ¼ t on CN��0; t�� ð2:6Þ

where q and l are respectively the density and the dynamic viscos-
ity of the fluid and I the unit tensor. The body force f = f(x, t), the
constraint t = t(x, t) and the boundary condition g = g(x, t) are
known. For the sake of simplicity, we chose g = 0. Finally, the initial
state is characterized by a given u(�,0).

The boundary condition (2.6) is derived from the pseudo-stress
tensor ~r ¼ lru� pI. Considering the Cauchy stress tensor
r ¼ lðruþrT uÞ � pI, one can obtain an alternate traction bound-
ary condition containing the non-symmetrical part:

l ruþrT u
� �

� pI
� �

� n ¼ t on CN��0; t�� ð2:7Þ

As we consider the pseudo-stress tensor in (2.3) and later in
(2.16), we will only study here the first one for consistency (which
is comonly used, see for exemple [27,20]). Nevertheless, a similar
study was carried out with the stress tensor and, since the results
are very similar, they are not shown here.

2.1. Velocity-correction schemes for open boundary condition

We shall compute two sequences ð~unÞ06n6N and ðpnÞ06n6N in a
recurrent way that approximate in some sense the quantities
ðuð�; tnÞÞ06n6N and ðpð�; tnÞÞ06n6N , solutions of the unsteady Stokes
problem (2.3)–(2.6). The scheme developed by Guermond and
Shen (Eqs. (3.6)–(3.8) in [21]) consists of two sub-steps. The first
is the prediction problem that computes a pressure increment
and a solenoidal velocity: find unþ1 and unþ1 such that:

q
aunþ1 þ ðb�aÞ~un þ ðc� bÞ~un�1 � c~un�2

Dt
þrunþ1 ¼ f nþ1 � f n in X ð2:8Þ

r �unþ1 ¼ 0 in X ð2:9Þ
unþ1 �n¼ 0 on CD ð2:10Þ
l@nðunþ1 �nÞ � pnþ1 ¼ tnþ1 �n on CN ð2:11Þ

where u is the pressure increment defined as:

unþ1 ¼ pnþ1 � pn þ vlr � ~un ð2:12Þ

The parameter v is used to switch between the standard incremen-
tal scheme (v = 0) and the rotational one (v = 1) and parameters a,
b, c depend on the temporal scheme used. Namely:

� a = 1, b = �1, c = 0 for the first order Euler time scheme,
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